
Inflation- Cosmological Problems

Flatness Problem

Recall (with Λ = 0): 
k

R2
= H2(⌦ � 1)

Divide by T2 and evaluate today:

k̂ =
k

R2
0T

2
0

= H2
0(⌦0 � 1)/T 2

0 < 2 x 10-58

Represents an initial condition on the Universe
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Inflation- Cosmological Problems

Horizon Problem

Causal volume V ~ t3

but the Universe expands as t2/3 (matter dominated)

Today’s visible Universe contains  (for t at recombination)

(
t0

t
)3(

R

R0
)3 = (

t0

t
) ⇠ 105

different causal horizon volumes.

Why is 
�T

T
⇠ 10�5
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Inflation- Cosmological Problems

Perturbations Problem

Perturbations appear to have been 
produced outside our horizon.
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Inflation- Cosmological Problems

Monopole Problem

The break-down of a GUT such as SU(5) to the SM with an explicit 
U(1) leads to the production of magnetic monopoles

The density of monopoles estimated by 1 per 
horizon volume at the time of the transition

nm ⇠ (2tc)
�3

tc ⇠ 10�2MP/T 2
cwith

so
nm

n�

⇠ (
10Tc

MP

)3

nm

n�

< O(10�25)limit:
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Inflation

• Standard cosmology assumes an adiabatically 
expanding Universe, R ~ 1/T

• Phase transitions can violate this condition
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Phase Transitions

• Expect several phase transitions in the Early Universe
- GUTS: SU5 → SU(3) x SU(2) x U(1)
- SM: SU(2) x U(1) → U(1)
- possibly other non-gauged symmetry breakings

• Entropy production common result

• Type of inflation will depend on the order of the phase transition

Friday, July 20, 12



Consider simple theory with a scalar field

with potential

and    is a constant to cancel the cosmological constantV̂

L = �1
2
(@µ�)2 � V (�)

V (�) =
1
4
��4 � 1

2
µ2�2 + V̂

and add 1-loop thermal corrections:

V (�) = V0(�) +
T

2⇡2

Z
k

2
dk ln

�
1� exp

⇥
(k2 + @

2
V0/@�

2)/T 2
⇤�
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in the range  T � m�

Notice the effective mass, 

m2
� =

1
4
�T 2 � µ2

and critical temperature

Tc = 2µ/
p

�

V (�) = V0(�) +
1

24

@2V0

@�2
T 2 � ⇡2

90
T 4

=
1

4
��4 � 1

2
(µ2 � 1

4
�T 2)�2 � 1

24
µ2T 2 � ⇡2

90
T 4 + V̂
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More possibilities with a local symmetry

connected region at the time of the SU(5) phase transition tc

nm ∼ (2tc)
−3 (18)

resulting in a monopole-to-photon ratio expressed in terms of the transition tem-
perature of

nm

nγ
∼
(

10Tc

MP

)3

(19)

The overall mass density of the Universe can be used to place a constraint on the
density of monopoles. For Mm ∼ 1016 GeV and Ωmho

2 <∼ 1 we have that

nm

nγ

<∼ 0(10−25) (20)

The predicted density, however, from (19) for Tc ∼ Mgut

nm

nγ
∼ 10−9 (21)

Hence, we see that standard guts and cosmology have a monopole problem.

2. Inflation

The inflationary Universe scenario14 has the potential (if we only knew which
potential to choose) to solve all of the above problems. For a review of the historical
development of inflation see ref.2.

2.1. Gauge Theories at High Temperatures
Before discussing how inflation actually works it will be useful to first look at

some general features of gauge theories at high temperatures. For a more complete
review see ref.15.

Let us consider the example of a complex scalar field, φ, which is not a singlet
under some local U(1) gauge symmetry, the Lagrangian is

L = −
1

4
FµνF

µν − (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ − V (φ) (22)

where Fµν = ∂µAν − ∂νAµ and

V (φ) = λ(φφ∗)2 − µ2φφ∗ + V̂ (23)

where V̂ is a constant. If we write φ = ηeiξ/
√

2, it is only the real field η which
picks up a vacuum expectation value (vev). After a gauge transformation φ →
e−iξφ and Aµ → A′

µ = Aµ − (1/e)∂µξ, the ξ field is eaten by Aµ and we are left
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)3

(19)

The overall mass density of the Universe can be used to place a constraint on the
density of monopoles. For Mm ∼ 1016 GeV and Ωmho

2 <∼ 1 we have that

nm

nγ

<∼ 0(10−25) (20)

The predicted density, however, from (19) for Tc ∼ Mgut

nm

nγ
∼ 10−9 (21)

Hence, we see that standard guts and cosmology have a monopole problem.

2. Inflation

The inflationary Universe scenario14 has the potential (if we only knew which
potential to choose) to solve all of the above problems. For a review of the historical
development of inflation see ref.2.

2.1. Gauge Theories at High Temperatures
Before discussing how inflation actually works it will be useful to first look at

some general features of gauge theories at high temperatures. For a more complete
review see ref.15.

Let us consider the example of a complex scalar field, φ, which is not a singlet
under some local U(1) gauge symmetry, the Lagrangian is

L = −
1

4
FµνF

µν − (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ − V (φ) (22)

where Fµν = ∂µAν − ∂νAµ and

V (φ) = λ(φφ∗)2 − µ2φφ∗ + V̂ (23)

where V̂ is a constant. If we write φ = ηeiξ/
√

2, it is only the real field η which
picks up a vacuum expectation value (vev). After a gauge transformation φ →
e−iξφ and Aµ → A′

µ = Aµ − (1/e)∂µξ, the ξ field is eaten by Aµ and we are left

with a lagrangian in terms of canonical fields, some gauge interactions and a finite
temperature potential16, for T ! mη

V (η) =
1

4
λη4 −

1

2

(

µ2 −
1

12
(4λ + 3e2)T 2

)

η2 + V̂ ′ (24)

In this case depending on the relative values of λ and e, there is a second order phase
transition with Tc = 12µ2/(4λ+3e2). When λ < e4 , the approximation T ! mη, mA

is no longer valid near Tc. In this case there is a first order transition. There is a
temperature Tc′ ∼ ev, where a second minimum appears. At a temperature between
Tc and Tc′, the global minimum shifts from 〈φ〉 = 0 to 〈φ〉 = v, although there is
still a barrier separating the two phases. Finally at T = Tc , the barrier disappears
and the sole minimum continues to evolve towards 〈φ〉 = v. For smaller values of
λ, λ < 3e4/16π2, one-loop corrections at T = 0 also become important. For the
simple model above and neglecting the scalar loops17, the scalar potential can be
expressed as

V (η) = Vo(η) +
3e4µ2

32λπ2
η2 +

3e4

64π2
η4 ln(η2/v2 −

3

2
) (25)

When λ < 3e4/16π2 , the phase transition is still first order, but the barrier remains
present even at very low temperatures. Finally when λ < 3e4/32π2, the global
minimum stays at 〈φ〉 = 0.

In general we can write the 1-loop correction to the potential V1 as

V1(η) = Aη4(ln η2/v2 −
1

2
) (26)

where v =
√

µ2/λ and

A =
1

64π2v4

(

∑

B

gBmB
4 −

∑

F

gFmF
4

)

(27)

and gB(F ) is the number of degrees of freedom for the bosons (fermions) of mass
mB(F ) entering into the loop. We can also write the thermal correction VT , when
η & T , as

VT (η) = −
1

90
π2

(

∑

B

gB +
7

8

∑

F

gF

)

T 4 +
1

2

(

∑

B

1

12
gBmB

2 +
7

8

∑

F

1

24
gFmF

2

)

T 2

(28)

2.2. Equations of Motion
Given a lagrangian for a scalar field including a scalar potential, one may incor-

porate it into the total action including gravity

I =
∫

d4x
√

g
(

R

2κ2
−

1

2
∂µφ∂µφ − V (φ)

)

(29)

or

after �! ⌘ei⇠/
p

2 (and a gauge transformation)
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Inflation

• Standard cosmology assumes an adiabatically 
expanding Universe, R ~ 1/T

• Phase transitions can violate this condition

Old Inflation

• Based on GUT symmetry breaking with a strong 
1st order transition
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Inflation

• Standard cosmology assumes an adiabatically 
expanding Universe, R ~ 1/T

• Phase transitions can violate this condition

Old Inflation

• Based on GUT symmetry breaking with a strong 1st order 
transition

• Universe becomes trapped in false vacuum
• Vacuum energy density act as a cosmological constant
• Transition proceeds by tunneling and bubble formation
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Inflation

Λ  = 8 π GN V0 

For ρ << V0, 

H2 =
Ṙ2

R2
⇡

8⇡GNV0

3
=

⇤

3

Ṙ

R
⇡

r
⇤

3
; R ⇠ eHtor

When the transition is over, the 
Universe reheats to T < V01/4  ~ Ti, but 
R >> Ri

Problem:  Transition never completes

For Hτ > 65, curvature problem solved
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New Inflation

GUT transition a la Coleman-Weinberg

V (�) = A�4(ln
�2

v2
�

1

2
) + D�2 + V̂

A =
1

64⇡2v4
(
X

B

gBm
4
B �

X

F

gFm
4
F ) =

5625g4

1025⇡2
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New Inflation
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Scalar Field Dynamics

For our simple scalar field model, 

L = �1
2
(@µ�)2 � V (�)

Equation of motion:
✓

@L
@@µ�

◆

;µ

� @L
@�

= 0

or 
�gµ⌫ (@⌫�);µ +

@V

@�
= 0

�gµ⌫@µ@⌫� + gµ⌫��
µ⌫@�� +

@V

@�
= 0

�̈ +
1

R2
r2� + 3H�̇ +

@V

@�
= 0
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Scalar Field Dynamics
Equations of motion

�̈ + 3H�̇ +
@V

@�
' �̈ + 3H�̇ + m2(�)� = 0

For |m2| << H2

� ⇠ e|m2|t/3H

Field moves very little for a period

⌧ ⇠ 3H/|m2|

during which:

H⌧ ⇠ H2

|m2| ⇠
v4

M2
P |m2|

Plenty of inflation possible!
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Late time evolution
� ⇠

v

mt
sin mt

Reheating through particle decay

TR ⇠ (�DMP)1/2

for ΓD < HI
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Density Fluctuations

During the slow-roll, density fluctuations are produced

�⇢

⇢
= 4H�⌧ =

H2

⇡3/2�̇
= (

8�

3⇡2
)1/2 ln3/2(Hk�1)

Kill models of new inflation based on SU(5) symmetry breaking

⇒ Inception of the Inflaton

Many new models of inflation become possible
• Primordial, chaotic, hybrid, natural, R2, eternal, 
stochastic, power-law, KK, assisted, .....
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Generic Inflation

V (⇥) = µ4V (⇥/MP )

Density fluctuations are roughly:
�⇤

⇤
� O(100)

µ2

M2
P

which can be used to fix μ
µ2

M2
P

⇥ few � 10�8

which in turns determines the Hubble parameter during inflation,
the duration of inflation, and the reheat temperature.
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Chaotic Inflation

Very simple potentials of the form:

V (�) = m2�2 or V (⇥) = �⇥4
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Chaotic Inflation
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Chaotic Inflation

Very simple potentials of the form:

V (�) = m2�2 or V (⇥) = �⇥4

� = 1/60
⇥ = 1/40
n = .95
r = .27

� = 1/120
⇥ = 1/120

n = .97
r = .13
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WMAP constraints on inflationary models– 26 –

Fig. 10.— Two-dimensional marginalized constraints (68% and 95% confidence levels) on inflationary pa-
rameters r, the tensor-to-scalar ratio, and ns, the spectral index of fluctuations, defined at k0 = 0.002/Mpc.
One-dimensional 95% upper limits on r are given in the legend. Left: The five-year WMAP data places
stronger limits on r (shown in blue) than three-year data (grey). This excludes some inflationary models
including λφ4 monomial inflaton models with r ∼ 0.27, ns ∼ 0.95 for 60 e-folds of inflation. Right: For
models with a possible running spectral index, r is now more tightly constrained due to measurements of
the third acoustic peak. Note: the two-dimensional 95% limits correspond to ∆(2 lnL) ∼ 6, so the curves
intersect the r = 0 line at the ∼ 2.5σ limits of the marginalized ns distribution.

4. Extended cosmological models with WMAP

The WMAP data place tight constraints on the simplest ΛCDM model parameters. In this section we
describe to what extent WMAP data constrain extensions to the simple model, in terms of quantifying the
primordial fluctuations and determining the composition of the universe beyond the standard components.
Komatsu et al. (2008) present constraints for WMAP combined with other data, and offer a more detailed
cosmological interpretation of the limits.

4.1. Primordial perturbations

4.1.1. Tensor fluctuations

In the ΛCDM model, primordial scalar fluctuations are adiabatic and Gaussian, and can be described
by a power law spectrum,

∆2
R(k) ∝

(

k

k0

)ns−1

, (14)

producing CMB angular power spectra consistent with the data. Limits can also be placed on the amplitude
of tensor fluctuations, or gravitational waves, that could have been generated at very early times. They
leave a distinctive large-scale signature in the polarized B-mode of the CMB (e.g., Basko & Polnarev (1980);
Bond & Efstathiou (1984)), that provides a clean way to distinguish them from scalar fluctuations. However,
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38 Komatsu et al.

(2007). This is in a good agreement with our corre-
sponding result for the “High LX” samples, 0.79 ± 0.10
(68% CL; statistical error only).

While the KS profiles are generally in a good agreement
with the X-ray derived profiles, they are more extended
than the X-ray-derived profiles (see Figure 16), which
makes the KS prediction for the projected SZ profiles
bigger. Note, however, that the outer slope of the fitting
formula given by Arnaud et al. (2009) (equation (C3))
has been forced to match that from hydrodynamical sim-
ulations of Nagai et al. (2007) in r ≥ r500. See the bot-
tom panels of Figure 16. The steepness of the profile
at r ! r500 from the simulation may be attributed to a
significant non-thermal pressure support from ρv2, which
makes it possible to balance gravity by less thermal pres-
sure at larger radii. In other words, the total pressure
(i.e., thermal plus ρv2) profile would probably be closer
to the KS prediction, but the thermal pressure would
decline more rapidly than the total pressure would.

If the SZ effect seen in the WMAP data is less than
expected, what would be the implications? One possibil-
ity is that protons and electrons do not share the same
temperature. The electron-proton equilibration time is
longer than the Hubble time at the virial radius, so that
the electron temperature may be lower than the pro-
ton temperature in the outer regions of clusters which
contribute a significant fraction of the predicted SZ flux
(Rudd & Nagai 2009; Wong & Sarazin 2009). The other
sources of non-thermal pressure support in outskirts of
the cluster (turbulence, magnetic field, and cosmic rays)
would reduce the thermal SZ effect relative to the ex-
pectation, if these effects are not taken into account in
modeling the intracluster medium. Heat conduction may
also play some role in suppressing the gas pressure (Loeb
2002, 2007).

In order to explore the impact of gas pressure at
r > r500, we cut the X-ray derived pressure profile at
rout = r500 (instead of 6r500) and repeat the analysis.
We find a = 0.74± 0.09 and 0.44± 0.14 for high and low
LX clusters, respectively. (We found a = 0.67±0.09 and
0.43±0.12 for rout = 6r500. See Table 12.) These results
are somewhat puzzling - the X-ray observations directly
measure gas out to r500, and thus we would expect to find
a ≈ 1 at least out to r500. This analysis may suggest that
the fiducial scaling relation of Böhringer et al. (2007) is a
source of a < 1. Note that a = 1 is within the systematic
error due to the scatter in the scaling relation. Had we
used the scaling relations of Melin et al. (2010), we would
find a ≈ 1 for rout = r500. While a large uncertainty in
the scaling relation prevents us from convincingly ruling
out a = 1, the relative amplitudes between high and low
LX clusters suggest that a significant amount of pressure
is missing in low mass (M500 " 4 × 1014 h−1 M") clus-
ters, even if we scale all the results such that high-mass
clusters are forced to have a = 1. A similar trend is also
seen in Figure 3 of Melin et al. (2010).

This interpretation is consistent with the SZ power
spectrum being lower than expected. The SPT mea-
sures the SZ power spectrum at l ! 3000. At such high
multipoles, the contributions to the SZ power spectrum
are dominated by relatively low-mass clusters, M500 "
4 × 1014 h−1 M" (see Figure 6 of Komatsu & Seljak
2002). Therefore, a plausible explanation for the lower-
than-expected SZ power spectrum is a missing pressure

Fig. 19.— Two-dimensional joint marginalized constraint (68%
and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar
ratio, r, derived from the data combination of WMAP+BAO+H0.
The symbols show the predictions from “chaotic” inflation models
whose potential is given by V (φ) ∝ φα (Linde 1983), with α =
4 (solid) and α = 2 (dashed) for single-field models, and α =
2 for multi-axion field models with β = 1/2 (dotted; Easther &
McAllister 2006).

in lower mass clusters.
Scaling relations, gas pressure, and entropy of low-

mass clusters and groups have been studied in the lit-
erature.35 Leauthaud et al. (2010) obtained a rela-
tion between LX of 206 X-ray-selected galaxy groups
and the mass (M200) derived from the stacking anal-
ysis of weak lensing measurements. Converting their
best-fitting relation to r200–LX relation, we find r200 =
1.26 h−1 Mpc

E0.89(z) [LX/(1044 h−2 erg s−1)]0.22. (Note that
the pivot luminosity of the original scaling relation is
2.6 × 1042 h−2 erg s−1.) As r500 ≈ 0.65r200, their rela-
tion is ≈ 1σ higher than the fiducial scaling relation that
we adopted (equation (89)). Had we used their scaling
relation, we would find even lower normalizations.

The next generation of simulations or analytical cal-
culations of the SZ effect should be focused more on
understanding the gas pressure profiles, both the ampli-
tude and the shape, especially in low-mass clusters. New
measurements of the SZ effect toward many individual
clusters with unprecedented sensitivity are now becom-
ing available (Staniszewski et al. 2009; Hincks et al. 2009;
Plagge et al. 2009). These new measurements would be
important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP 7-year temperature and polarization
data, new measurements of H0 (Riess et al. 2009), and
improved large-scale structure data (Percival et al. 2009),
we have been able to rigorously test the standard cosmo-
logical model. The model continues to be an exquisite
fit to the existing data. Depending on the parameters,
we also use the other data sets such as the small-scale
CMB temperature power spectra (Brown et al. 2009; Re-
ichardt et al. 2009, for the primordial helium abundance),
the power spectrum of LRGs derived from SDSS (Reid
et al. 2009, for neutrino properties), the Type Ia super-
nova data (Hicken et al. 2009b, for dark energy), and the

35 A systematic study of the thermodynamic properties of low-
mass clusters and groups is given in Finoguenov et al. (2007) (also
see Finoguenov et al. 2005a,b).

From WMAP7
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• In the Solar System?
• In the Galaxy?

–in cosmic rays antimatter is secondary
–antiHelium - never observed

Anti-matter in the Universe

• On Earth?  
• On the Moon?

H̄e = p̄p̄n̄n̄
• Anywhere?
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Baryogenesis
The Baryon asymmetry

• Goal:  To calculate η from microphysics

• Problem: In baryon symmetric universe the baryon density is 
determined by freeze-out of annihilations

nB

n�

=
nB̄

n�

For T >> mN, nB

n�

⇠ O(1)

For T < mN,
nB

n�

⇠ (
mN

T
)3/2e�mN/T
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Baryogenesis
The Baryon asymmetry

Compute Freeze-out

Annihilations: �v ⇠
1

m2
⇡

Rate: � = n�v ⇠
m3/2

N T 3/2

m2
⇡

e�mN/T

Compare to expansion rate: H ⇠
T 2

MP

Freeze-out at T/mN ~ 1/45 

nB

n�

=
nB̄

n�

⇠ 10�19
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The Sakharov Conditions

To generate an asymmetry:

1.Baryon Number Violating Interactions

2.C and CP Violation

3.Departure from Thermal equilibrium

1. and 2. are contained in GUTs 
3. is obtained in an expanding Universe
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Grand Unified Theories

X

e _

d

X

u

u

_

_

In SU(5), there are gauge (and Higgs) bosons which mediate baryon 
number violation.  Eg.,

ΔB = + 1/3 ΔB = - 2/3
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Out-of-equilibrium decay

Decay rate: � ' ↵MX

But decays occur only when Γ > H

↵MX > N(T )1/2T 2/MP

or
T 2 < ↵MXMPN(T )�1/2.

Out-of-equilibrium if Γ < H at T ~ MX 

Require MX > ↵MP(N(MX))�1/2
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Grand Unified Theories

X

e _

d

X

u

u

_

_

In SU(5), there are gauge (and Higgs) bosons which mediate baryon 
number violation.  Eg.,

ΔB = + 1/3 ΔB = - 2/3

r 1� r
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Out-of-equilibrium decay

Big Bang Baryogenesis 17

where the first term is the common symmetry factor and the decay rate is

Γ =
1

2MX

∫

WdΠ1dΠ2 (59)

with

dΠ =
gd3p

(2π)32E
(60)

for g degrees of freedom. Denote the parity (P) of the states (1) and (2) by ↑ or ↓,
then we have the following transformation properties:

Under CPT : Γ (X → 1 ↑) = Γ (1̄ ↓→ X̄)
Under CP : Γ (X → 1 ↑) = Γ (X̄ → 1̄ ↓)
Under C : Γ (X → 1 ↑) = Γ (X̄ → 1̄ ↑)

(61)

We can now denote

r = Γ (X → 1 ↑) + Γ (X → 1 ↓) (62)

r̄ = Γ (X̄ → 1̄ ↑) + Γ (X̄ → 1̄ ↓) (63)

The total baryon number produced by an X , X̄ decay is then

∆B = −
2

3
r +

1

3
(1 − r) +

2

3
r̄ −

1

3
(1 − r̄)

= r̄ − r = Γ (X̄ → 1̄ ↑) + Γ (X̄ → 1̄ ↓) − Γ (X → 1 ↑) − Γ (X → 1 ↓) (64)

One sees clearly therefore, that from eqs. (61) if either C or CP are good symmetries,
∆B = 0.

In the out-of-equilibrium decay scenario [18], the total baryon asymmetry pro-
duced is proportional to ∆B = (r̄− r). If decays occur out-of-equilibrium, then at the
time of decay, nX ≈ nγ at T < MX . We then have

nB

s
=

(∆B)nX

s
∼

(∆B)nX

N(T )nγ
∼ 10−2(∆B) (65)

The schematic view presented above can be extended to a complete calculation
given a specific model [19, 20], see also [21] for reviews. It makes sense to first consider
the simplest GUT, namely SU(5) (for a complete discussion of GUTs see [22]. In
SU(5), the standard model fermions are placed in a 5̄ and 10 representation of SU(5)













dc
1

dc
2

dc
3

e
ν













L

= 5̄













0 uc
3 −uc

2 −u1 −d1

0 uc
1 −u2 −d2

0 −u3 −d3

0 −ec

0













L

= 10 (66)

where the subscripts are SU(3)-color indices. The standard model gauge sector is
augmented by the color triplet X and Y gauge bosons which form a doublet under
SU(2)L and have electric charges ±4/3 and ±1/3 respectively. The full set of 24 gauge
bosons are in the adjoint representation. In minimal SU(5), an adjoint of Higgs scalars,
Σ, is required for the breakdown of SU(5) to the standard model SU(3)c× SU(2)L×
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So what is ΔB?

at the tree level

� / g†5g5
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gX1

gX2

gY1
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(real)

at1-loop

�B / Img†X1
gY1gX2gY2

but gX1 = gY1 = gX2 = gY2 = g5

and ΔB = 0
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Generation of an asymmetry

Fry et al.
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Final asymmetry

Fry et al.
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Damping of initial asymmetries

Fry et al.
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Supersymmetry
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Affleck-Dine baryogenesis
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2.3 The Affleck-Dine Mechanism

Another mechanism for generating the cosmological baryon asymmetry is the decay
of scalar condensates as first proposed by Affleck and Dine[31]. This mechanism is
truly a product of supersymmetry. It is straightforward though tedious to show that
there are many directions in field space such that the scalar potential given in eq. (86)
vanishes identically when SUSY is unbroken. That is, with a particular assignment of
scalar vacuum expectation values, V = 0 in both the F− and D− terms. An example
of such a direction is

uc
3 = a sc

2 = a − u1 = v µ− = v bc
1 = eiφ

√

v2 + a2 (93)

where a, v are arbitrary complex vacuum expectation values. SUSY breaking lifts this
degeneracy so that

V " m̃2φ2 (94)

where m̃ is the SUSY breaking scale and φ is the direction in field space correspond-
ing to the flat direction. For large initial values of φ, φo ∼ Mgut, a large baryon
asymmetry can be generated[31, 32]. This requires the presence of baryon number vi-
olating operators such as O = qqql such that 〈O〉 &= 0. The decay of these condensates
through such an operator can lead to a net baryon asymmetry.

In a supersymmetric gut, as we have seen above, there are precisely these types of
operators. In figure 13, a 4-scalar diagram involving the fields of the flat direction (93)
is shown. Again, G̃ is a (light) gaugino. The two supersymmetry breaking insertions
are of order m̃, so that the diagram produces an effective quartic coupling of order
m̃2/(φ2

o + M2
X).

Fig. 13. Baryon number violating diagram involving flat direction fields.

The baryon asymmetry produced, is computed by tracking the evolution of the
sfermion condensate, which is determined by

φ̈ + 3Hφ̇ = −m̃2φ (95)

V (⇥) = m̃2⇥⇥� +
1
2
i�(⇥4 � ⇥�4)
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Leptogenesis
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Sphaleron interactions to convert lepton asymmetry to 
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where µ =
∑

µνi . In (107), the constraint on the weak isospin charge, Q3 ∝ µW = 0
has been employed. Though the charges B, L, and Q have been written as chemical
potentials, since for small asymmetries, an asymmetry (nf − nf̄ )/s ∝ µf/T , we can
regard these quantities as net number densities.

The sphaleron process yields the additional condition,

9µuL + µ = 0 (108)

which allows one to solve for L and B − L in terms of µuL , ultimately giving

B =
28

79
(B − L) (109)

Thus, in the absence of a primordial B − L asymmetry, the baryon number is erased
by equilibrium processes. Note that barring new interactions (in an extended model)
the quantities 1

3B − Le, 1
3B − Lµ, and 1

3B − Lτ remain conserved.
With the possible erasure of the baryon asymmetry when B − L = 0 in mind,

since minimal SU(5) preserves B − L, electroweak effects require guts beyond SU(5)
for the asymmetry generated by the out-of-equilibrium decay scenario to survive. Guts
such as SO(10) where a primordial B − L asymmetry can be generated becomes a
promising choice. The same holds true in the Affleck-Dine mechanism for generating
a baryon asymmetry. In larger guts there are baryon number violating operators and
associated flat directions[38]. A specific example in SO(10) was worked out in detail
by Morgan[39].

An important question remaining to be answered is whether or not the baryon
asymmetry can in fact be generated during the electroweak weak phase transition.
This has been the focus of much attention in recent years. I refer the reader to the
review of ref. [34]. In the remainder of these lectures, I will focus on alternative means
for generating a baryon asymmetry which none-the-less makes use of the sphaleron
interactions.

The above argument regarding the erasure of a primordial baryon asymmetry
relied on the assumption that all particle species are in equilibrium. However, because
of the extreme smallness of the electron Yukawa coupling, eR does not come into
equilibrium until the late times. The eR decoupling temperature is determined by the
rate of eR → eL + H transitions and comparing this rate to the expansion rate

ΓLR =
πh2

e

192ζ(3)

m2
H

T
∼

20T 2

MP
% H (110)

which gives T = T∗ ∼ O(few) TeV. Thus one may ask the question, whether or not
the baryon asymmetry may be stored in a primordial eR asymmetry [40]. Because
sphalerons preserve B−L, any lepton number stuck in eR is accompanied by an equal
baryon number. However, at temperatures below the eR decoupling temperature,
baryon number will begin to be destroyed so long as sphalerons are in equilibrium.
Sphalerons are in equilibrium from about the electroweak phase transition to T ∼ 1012

GeV [33]. As it turns out, the eR (baryon) asymmetry is exponentially sensitive to
parameters of the model.
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