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Friedmann-Robertson-Walker metric

ds2 = dt2 � R2(t)

✓
dr2

1 � kr2
+ r2(d✓2 + sin2 ✓d�2)

◆

R(t) is the scale factor
k is curvature constant : 

k = -1, 0, +1 for spatially open, flat or closed Universes

with perfect-fluid source

T µ⌫ = �pgµ⌫ + (⇢ + p)uµu⌫

and solve Einstein’s equations

Rµ⌫ �
1

2
gµ⌫R � ⇤gµ⌫ = 8⇡GNTµ⌫
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The (00) component gives:

H2 ⌘
Ṙ2

R2
=

8⇡GN⇢

3
�

k

R2
+

⇤

3

The (ii) components give:

R̈

R
=

⇤

3
�

4⇡GN(⇢ + 3p)

3

In addition Tμν;ν = 0 gives:
⇢̇ = �3H(⇢ + p)
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Consider k = Λ = 0

Ṙ2

R2
=

8⇡GN⇢

3
⇢̇ = �3H(⇢ + p)

i) Radiation dominated Universe: p = ρ/3

ρ ~ R-4 and R ~ t1/2 

ii) Matter dominated Universe: p = 0

ρ ~ R-3 and R ~ t2/3 
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The Universe today

Define the deceleration parameter : q0 = �
R̈0R0

Ṙ2
0

R̈

R
=

⇤

3
�

4⇡GN(⇢ + 3p)

3
           becomes (with p << ρ)

�2q0H
2
0 =

2⇤

3
�

8⇡GN⇢0

3
= ⇤ � H2

0 �
k

R2
0

or
k

R2
0

= ⇤ + H2
0(2q0 � 1)

or
k

R2
0

= H2
0(

3

2
⌦0 � q0 � 1)

and  h = H/100 (km/Mpc/s)

⌦ = ⇢/⇢cwhere g cm-3⇢c = 3H2/8⇡GN = 1.88 ⇥ 10�29h2
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The Universe today

When Λ = 0, 

q0 =
4⇡GN⇢0

3H2
0

=
⌦0

2

and
k

R2
0

= H2
0(⌦0 � 1) (still true for p ≠ 0)
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Evolution of Ω

(Λ = 0)

⌦ =
k

R2H2
+ 1

k = 0 ⇒ Ω = 1  always

⌦ =
k

8⇡GNA
3R3��2 � k

+ 1

1

1

R

k = 0k = 0

1

1

R

k = +1= +1

k = = 0

1

1

R

k = +1= +1

k = = 0

k = = -1

R2H2 =
8⇡GNA

3R3��2
� kwrite ⇢ = AR�3�
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Age of the Universe
(Λ = 0)

Ṙ2

R2
=

8⇡GN⇢

3
�

k

R2

⇢ = ⇢0

✓
R0

R

◆3� k

R2
0

= H2
0(⌦0 � 1)

x = R/R0

ẋ2 = ⌦0H
2
0(

R0

R
)3��2 � (⌦0 � 1)H2

0

ẋ = H0
⇥
1 � ⌦0 + ⌦0x

2�3�
⇤1/2

H0t =

Z 1

0

dx

[1 � ⌦0 + ⌦0x2�3�]1/2
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Age of the Universe
(Λ = 0)

Special cases: Ω0 = 1

γ = 1
t =

2

3H

γ = 4/3
t =

1

2H
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The Hot Thermal Universe

⇢� =

Z
E�dn�

The energy density in photons:

with density of states (gγ = 2)

dn

�

=
g

�

2⇡

2
[exp(E

�

/T ) � 1]�1
q

2
dq

⇢� =
⇡2

15
T 4 p� =

1

3
⇢� s� =

4⇢�

3T
n� =

2⇣(3)

⇡2
T 3

giving

familiar blackbody relations
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⇢i =

Z
Eidnqi

In general,

dn

qi =
g

i

2⇡

2
[exp[(E

qi � µ

i

)/T ] ± 1]�1
q

2
dq

with

Eqi =
�
m2

i + q2
i

�1/2and

si =
1
T


Eqidnqi ⌥

kT

(2⇡)3

Z
gi ln(1⌥ nqi)d

3qi

�

Free energy density: 

F = ⇢� Ts = µn� p

μ is the chemical potential (μ → -μ for antiparticles)

Friday, July 20, 12



Chemical potential related to particle-antiparticle asymmetry

Consider (for fermions), 

nf � nf̄ =
gf

2⇡2

Z
p2dp


1

e
E�µ

T + 1
� 1

e
E+µ

T + 1

�

Define β=μ/T, and expand for small β

=
gfT 3

6
�

✓
1 +

�2

⇡2

◆

so, β is of order 
nf � nf̄

n�
⇠ 10�10
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Non-relativistic number densities:

nf =
gf

2⇡2

Z
p2dp

e
(p2+m2)1/2

T + 1
For                    p⌧ m

nf =
gf

2⇡2
e�m/T

Z
e�p2/2mT p2dp

nf '
gf

(2⇡)3/2
(mT )3/2e�m/T

⇢ = mn
and

Friday, July 20, 12



For Radiation mi << T:

⇢ =

 
X

B

gB +
7

8

X

F

gF

!
⇡2

30
T 4 ⌘

⇡2

30
N(T ) T 4

p =
1
3
⇢ =

⇡2

90
N(T )T 4

s =
(⇢ + p)

T
=

4
3

⇢

T
=

2⇡2

45
N(T )T 3
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1. Big-Bang cosmology 13

1.3.2. Radiation content of the Early Universe:

At the very high temperatures associated with the early Universe, massive particles
are pair produced, and are part of the thermal bath. If for a given particle species i
we have T ! mi, then we can neglect the mass in Eq. (1.34) to Eq. (1.38), and the
thermodynamic quantities are easily computed as in Eq. (1.39). In general, we can
approximate the energy density (at high temperatures) by including only those particles
with mi " T . In this case, we have

ρ =

(

∑

B

gB +
7

8

∑

F

gF

)

π2

30
T 4 ≡

π2

30
N (T ) T 4 , (1.41)

where gB(F ) is the number of degrees of freedom of each boson (fermion) and the sum
runs over all boson and fermion states with m " T . The factor of 7/8 is due to the
difference between the Fermi and Bose integrals. Eq. (1.41) defines the effective number
of degrees of freedom, N(T ), by taking into account new particle degrees of freedom as
the temperature is raised. This quantity is plotted in Fig. 1.3 [40].

The value of N(T ) at any given temperature depends on the particle physics model.
In the standard SU(3)× SU(2)×U(1) model, we can specify N(T ) up to temperatures of
O(100) GeV. The change in N (ignoring mass effects) can be seen in the table below.

Temperature New Particles 4N(T )

T < me γ’s + ν’s 29
me < T < mµ e± 43
mµ < T < mπ µ± 57

mπ < T < T †
c π’s 69

Tc < T < mstrange π’s + u, ū, d, d̄ + gluons 205
ms < T < mcharm s, s̄ 247
mc < T < mτ c, c̄ 289
mτ < T < mbottom τ± 303
mb < T < mW,Z b, b̄ 345
mW,Z < T < mHiggs W±, Z 381

mH < T < mtop H0 385
mt < T t, t̄ 427

†Tc corresponds to the confinement-deconfinement transition between quarks and hadrons.

At higher temperatures, N(T ) will be model-dependent. For example, in the minimal
SU(5) model, one needs to add 24 states to N(T ) for the X and Y gauge bosons, another
24 from the adjoint Higgs, and another 6 (in addition to the 4 already counted in W±, Z,
and H) from the 5 of Higgs. Hence for T > mX in minimal SU(5), N(T ) = 160.75. In a
supersymmetric model this would at least double, with some changes possibly necessary
in the table if the lightest supersymmetric particle has a mass below mt.

September 20, 2011 11:05
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Grand Unified Theories:

Need to add:

12 Gauge Bosons; X, Y
24 Higgs bosons Σ to break SU(5)
6 more Higgses (to complete the SU(5) multiplets)

Grand Total: N = 160.75

Many more if theory is 
supersymmetric!
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The quark-hadron transition

Consider a gas of pions:

n⇡ =
3
2
n�

Since nγ ~ 400 cm-3

we can write

n⇡ =
3
2
(400cm�3)

✓
T

T0

◆3

at 200 MeV, that’s about .4 π’s / fm3 
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The quark-hadron transition

Consider the contributions of all 
known hadrons to the pressure, 
and the contribution of (free) 
quarks + a bag term (-B) to 
simulate confinement
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The quark-hadron transition

Since F = -p (for μ=0), predict hadrons are present over 
quarks at high T!
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The quark-hadron transition
Problem cured by taking into 
account strong repulsive 
interactions among hadrons.

e.g. N-N (Reid) potential 
K.A. Olive / Ouark-hadron transition 463 

pions. The nucleon-nucleon potential  is derived f rom the Reid potential  of the 
form [17] 

U(r) = ( -10 .46  e - ' r  - 1650.6 e - 4 g r  -1- 6484.3 e-7~'r)//zr, (2) 

where* /x  = m~. When integrating this expression over all space, one obtains the 
potential  energy as a function of density alone: 

Uy(n) = 1 8 . 7 ( ~ )  nN 

(3) 
= 680 nN, 

where nN is the number  density of nucleons measured in fm -3 and the potential  
energy in units of MeV. 

At  this point one might ask, given only these two potentials in the hadron phase, 
how are the interactions between hadrons besides N and ~- accounted for? For 
example,  a complete calculation would require the inclusion of the potentials 
describing the NA, A~;, zrp, ~oK, etc. interactions. Clearly this is not a workable 
situation. Therefore,  the following assumption is made and used throughout:  All 
baryon interactions are described by UN and all meson terms by U=. 

In the quark phase, although the exact form of the quark potential  is not known, 
one can be confident that it is increasing with increasing interquark separation r 
[19]. To first order in any expansion of this type one would obtain a potential  
which increases linearly with r. The slope of this potential,  K, might then be 
associated with the Q C D  scale factor A as K - A  2. Thus one might consider a 
quark potential  of the form 

Uo = K r ,  (4) 

where r, the interquark separation, is given by** r = nQ 1/3. In the following, two 
values of K will be considered. The first is taken f rom the naive rotating string 
[20] model  which gives excellent fits to the charmonium spectrum [21], K = 
0.18 G e V  2 (corresponding to A = 420 MeV). The second value is chosen primarily 
to show the sensitivity of the results to the slope of the quark potential,  K = 
0.10 G e V  2 (A = 3 0 0  MeV). (For a complete discussion of these potentials, their 
uncertainties, and the sensitivity of the thermodynamic  quantities on the potentials 
see ref. [9].) 

* This potential differs somewhat from the one used in ref. [9], in that the full Reid potential has now 
been included rather than just the repulsive term due to oJ exchange. Although results will be 
quantitatively different, there is no change in the qualitative behavior of the thermodynamic 
properties. This choice of potential also agrees quite well with the one derived by Bender and 
Dosch [18]. 

** The assignment r = nQ 1/3 is equivalent to assuming Debye color screening to be effective, namely 
only nearest-neighbor interactions dominate the potential. 
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Effective numbers of degrees of freedom

Tc = 150 (450) MeV
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Time-temperature Relation

γ = 4/3
t =

1

2H

Recall
H2 =

8⇡GN⇢

3

t = (
3

32⇡GN⇢
)1/2 = (

90

32⇡3GNN(T )
)1/2T �2

tsT
2
MeV =

2.41
p

N(t)

or
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Equilibrium

• Particles will be in equilibrium if there is a reaction 
rate which is fast enough: Γ > Η

•interaction rate Γ 
•mean time between interactions τ ~ Γ-1

•expansion rate H
•age of the universe t ~ H-1

Γ > Η   ⇒  t > τ
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Neutrinos
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Figure 1: The effective numbers of relativistic degrees of freedom as a function of tempera-
ture.

as e+ + e− ↔ ν + ν̄ or e + ν ↔ e + ν etc., the rates for these processes can be
approximated by

Γ = n〈σv〉 (24)

where 〈σv〉 is the thermally averaged weak interaction cross section

〈σv〉∼ 0(10−2)T 2/M4
W (25)

and n is the number density of leptons. Hence the rate for these interactions
is

Γwk∼ 0(10−2)T 5/M4
W (26)

The expansion rate, on the other hand, is just

H =

(

8πGNρ

3

)1/2

=

(

8π3

90
N(T )

)1/2

T 2/MP ∼ 1.66N(T )1/2T 2/MP . (27)

The Planck mass MP = G−1/2
N = 1.22 × 1019 GeV.

Neutrinos will be in equilibrium when Γwk > H or

T > (500M4
W )/MP )1/3∼ 1MeV. (28)

6

kept in thermal equilibrium by processes such as

� = nh�viand h�vi⇠ 0(10�2)T 2/M 4
Wand

�wk⇠ 0(10�2)T 5/M 4
W

Neutrinos in equilibrium when
T > (500M 4

W)/MP)1/3⇠ 1MeV.

1. Big-Bang cosmology 15

A good example for a process which goes in and out of equilibrium is the weak
interactions of neutrinos. On dimensional grounds, one can estimate the thermally
averaged scattering cross section

〈σv〉 ∼ O
(

10−2
)

T 2/m4
W (1.45)

for T <∼ mW. Recalling that the number density of leptons is n ∝ T 3, we can compare
the weak interaction rate, Γwk ∼ n〈σv〉, with the expansion rate,

H =

(

8πGNρ

3

)1/2

=

(

8π3

90
N (T )

)1/2

T 2/MP

∼ 1.66N (T )1/2 T 2/MP,

(1.46)

where the Planck mass MP = G
−1/2
N = 1.22 × 1019 GeV.

Neutrinos will be in equilibrium when Γwk > H or

T >
(

500 m4
W/MP

)1/3
∼ 1 MeV . (1.47)

However, this condition assumes T & mW; for higher temperatures, we should write
〈σv〉 ∼ O(10−2)/T 2, so that Γ ∼ 10−2T . Thus, in the very early stages of expansion, at
temperatures T >∼ 10−2MP/

√
N , equilibrium will not have been established.

Having attained a quasi-equilibrium stage, the Universe then cools further to the
point where the interaction and expansion timescales match once again. The temperature
at which these rates are equal is commonly referred to as the neutrino decoupling or
freeze-out temperature and is defined by Γwk(Td) = H(Td). For T < Td, neutrinos drop
out of equilibrium. The Universe becomes transparent to neutrinos and their momenta
simply redshift with the cosmic expansion. The effective neutrino temperature will simply
fall with T ∼ 1/R.

Soon after decoupling, e± pairs in the thermal background begin to annihilate (when
T <∼ me). Because the neutrinos are decoupled, the energy released due to annihilation
heats up the photon background relative to the neutrinos. The change in the photon
temperature can be easily computed from entropy conservation. The neutrino entropy
must be conserved separately from the entropy of interacting particles. A straightforward
computation yields

Tν = (4/11)1/3 Tγ ( 1.9 K . (1.48)

Today, the total entropy density is therefore given by

s =
4

3

π2

30

(

2 +
21

4

(

Tν/Tγ
)3
)

T 3
γ =

4

3

π2

30

(

2 +
21

11

)

T 3
γ = 7.04 nγ . (1.49)

Similarly, the total relativistic energy density today is given by

ρr =
π2

30

[

2 +
21

4

(

Tν/Tγ
)4
]

T 4
γ ( 1.68ργ . (1.50)
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expansion rate (again)
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Entropy Conservation

Energy conservation:  Tμν;ν = 0

⇢̇ = �3H(⇢ + p)

equivalent to 
ṗR3 =

d

dt
(R3(⇢ + p)) =

d

dt
(R3Ts)

Now, ṗ =
dp

dT

dT

dt
= s

dT

dt

s
dT

dt
R3 =

d

dt
(R3Ts) = s

dT

dt
R3 + T

d

dt
(R3s)so

⇒
d

dt
(R3s) = 0
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Neutrino Temperature

• At T ~ 1 MeV neutrinos decouple
• At T ~ 1/2 MeV e+ e- annihilate to photons
• Entropy of “γ’s” and ν’s conserved speparately
• Prior to annihilation, Tγ = Tν = T>

s> =
4

3

⇢>

T>

=
4

3
(2 +

7

2
)(

⇡2

30
)T 3

>

• After annihilation, Tγ = T<  but, Tν = T>

s< =
4

3

⇢<

T<

=
4

3
(2)(

⇡2

30
)T 3

<

T⌫ = (4/11)1/3T� ' 1.9K
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Another example of Freeze-out
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The Relic DensityThe Relic Density

At high temperatures T >>m ������

����� ’s in equilibrium    > H������n �~ n

 ~ n v~ T3 v ;  HM
p 
~ �~ �

As T < m ���annihilations drop n

n �~ e-m /T n

Until freeze-out,  < H�          n n � �constant

T ~ m t

n n

1

ν ν

f f̄
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Annihilation Cross sections:

⌫⌫ ! ff̄

h�vreli =
X

f

1

M

2

 
1�

m

2
f

M

2

!1/2

[af + bbx+ . . . ]

af = C0 + C1 + C2

bf = �3

2
(2C0 + C1) +

3

4
�f (C0 + C1 + C2)

�f = m2
f/(M

2 �m2
f )

⇠f = m2
f/M

2
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The Relic Density:

Because of the p-wave suppression associated with Majorana fermions, the s-wave part
of the annihilation cross-section is suppressed by the outgoing fermion masses. This means
that it is necessary to expand the cross-section to include p-wave corrections which can be
expressed as a term proportional to the temperature if neutralinos are in equilibrium. Unless
the B̃ mass happens to lie near mZ/2 or mh/2, in which case there are large contributions to
the annihilation through direct s-channel resonance exchange, the dominant contribution to
the B̃B̃ annihilation cross section comes from crossed t-channel sfermion exchange. In the
absence of such a resonance, the thermally-averaged cross section for B̃B̃ → f f̄ takes the
generic form

〈σv〉 = (1 −
m2

f

m2
B̃

)1/2 g4
1

128π

[

(Y 2
L + Y 2

R)2(
m2

f

∆2
f

)

+ (Y 4
L + Y 4

R)(
4m2

B̃

∆2
f

)(1 + ...) x

]

≡ a + bx (214)

where YL(R) is the hypercharge of fL(R), ∆f ≡ m2
f̃

+ m2
B̃
− m2

f , and we have shown only the

leading P -wave contribution proportional to x ≡ T/mB̃. Annihilations in the early Universe
continue until the annihilation rate Γ & σvnχ drops below the expansion rate, H . For
particles which annihilate through approximate weak scale interactions, this occurs when
T ∼ mχ/20. Subsequently, the relic density of neutralinos is fixed relative to the number of
relativistic particles.

As noted above, the number density of neutralinos is tracked by a Boltzmann-like equa-
tion,

dn

dt
= −3

Ṙ

R
n − 〈σv〉(n2 − n2

0) (215)

where n0 is the equilibrium number density of neutralinos. By defining the quantity f =
n/T 3, we can rewrite this equation in terms of x, as

df

dx
= mχ

(
1

90
π2κ2N

)1/2

(f 2 − f 2
0 ) (216)

The solution to this equation at late times (small x) yields a constant value of f , so that
n ∝ T 3. The final relic density expressed as a fraction of the critical energy density can be
written as [19]

Ωχh2 & 1.9 × 10−11

(
Tχ

Tγ

)3

N1/2
f

(
GeV

axf + 1
2bx

2
f

)

(217)

where (Tχ/Tγ)3 accounts for the subsequent reheating of the photon temperature with respect
to χ, due to the annihilations of particles with mass m < xfmχ [49]. The subscript f refers
to values at freeze-out, i.e., when annihilations cease.

In Figure 11 [105], regions in the M2 − µ plane (rotated with respect to Figure 9) with
tan β = 2, and with a relic abundance 0.1 ≤ Ωh2 ≤ 0.3 are shaded. In Figure 11, the
sfermion masses have been fixed such that m0 = 100 GeV (the dashed curves border the
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the B̃B̃ annihilation cross section comes from crossed t-channel sfermion exchange. In the
absence of such a resonance, the thermally-averaged cross section for B̃B̃ → f f̄ takes the
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where YL(R) is the hypercharge of fL(R), ∆f ≡ m2
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+ m2
B̃
− m2

f , and we have shown only the

leading P -wave contribution proportional to x ≡ T/mB̃. Annihilations in the early Universe
continue until the annihilation rate Γ & σvnχ drops below the expansion rate, H . For
particles which annihilate through approximate weak scale interactions, this occurs when
T ∼ mχ/20. Subsequently, the relic density of neutralinos is fixed relative to the number of
relativistic particles.

As noted above, the number density of neutralinos is tracked by a Boltzmann-like equa-
tion,
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Ṙ

R
n − 〈σv〉(n2 − n2

0) (215)

where n0 is the equilibrium number density of neutralinos. By defining the quantity f =
n/T 3, we can rewrite this equation in terms of x, as
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The solution to this equation at late times (small x) yields a constant value of f , so that
n ∝ T 3. The final relic density expressed as a fraction of the critical energy density can be
written as [19]
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where (Tχ/Tγ)3 accounts for the subsequent reheating of the photon temperature with respect
to χ, due to the annihilations of particles with mass m < xfmχ [49]. The subscript f refers
to values at freeze-out, i.e., when annihilations cease.

In Figure 11 [105], regions in the M2 − µ plane (rotated with respect to Figure 9) with
tan β = 2, and with a relic abundance 0.1 ≤ Ωh2 ≤ 0.3 are shaded. In Figure 11, the
sfermion masses have been fixed such that m0 = 100 GeV (the dashed curves border the
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What is (Tχ/Tγ) ?

xf � 1/20 Nf � N(m�/20)

e.g., for mχ = 100 GeV, Tf � 5GeV Nf � 345/4

(T⇥/T�)3 = (43/4Nf )� (4/11)
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• Relic Density limit on light ν masses:

• WMAP +2df +  limit

• Heavy neutrinos (m > GeV) excluded as dark matter 
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Matter Domination

Radiation density:

1. Big-Bang cosmology 19

abundance is in excellent agreement with that found in quasar absorption systems. It
is in reasonable agreement with the helium abundance observed in extra-galactic HII
regions (once systematic uncertainties are accounted for), but is in poor agreement with
the Li abundance observed in the atmospheres of halo dwarf stars [59]. (See the review
on BBN—Sec. 20 of this Review for a detailed discussion of BBN or references [60,61].)

1.3.8. The transition to a matter-dominated Universe:

In the Standard Model, the temperature (or redshift) at which the Universe undergoes
a transition from a radiation dominated to a matter dominated Universe is determined by
the amount of dark matter. Assuming three nearly massless neutrinos, the energy density
in radiation at temperatures T ! 1 MeV, is given by

ρr =
π2

30

[

2 +
21

4

(

4

11

)4/3
]

T 4 . (1.56)

In the absence of non-baryonic dark matter, the matter density can be written as

ρm = mNη nγ , (1.57)

where mN is the nucleon mass. Recalling that nγ ∝ T 3 [cf. Eq. (1.39)], we can solve for
the temperature or redshift at the matter-radiation equality when ρr = ρm,

Teq = 0.22 mN η or
(

1 + zeq
)

= 0.22 η
mN

T0
, (1.58)

where T0 is the present temperature of the microwave background. For η = 6.2 × 10−10,
this corresponds to a temperature Teq $ 0.13 eV or (1+ zeq) $ 550. A transition this late
is very problematic for structure formation (see Sec. 1.4.5).

The redshift of matter domination can be pushed back significantly if non-baryonic
dark matter is present. If instead of Eq. (1.57), we write

ρm = Ωmρc

(

T

T0

)3

, (1.59)

we find that

Teq = 0.9
Ωmρc

T 3
0

or
(

1 + zeq
)

= 2.4 × 104Ωmh2 . (1.60)
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With Dark Matter
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