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The Object of the Exercise

The aim of the cosmologist is to explain how large-scale structures formed in the
expanding Universe in the sense that, if δϱ is the enhancement in density of some
region over the average background density ϱ, the density contrast ∆ = δϱ/ϱ reached
amplitude 1 from initial conditions which must have been remarkably isotropic and
homogeneous. Once the initial perturbations have grown in amplitude to
∆ = δϱ/ϱ ≈ 1, their growth becomes non-linear and they rapidly evolve towards
bound structures in which star formation and other astrophysical process lead to the
formation of galaxies and clusters of galaxies as we know them.

The density contrasts ∆ = δϱ/ϱ for galaxies, clusters of galaxies and superclusters at
the present day are about ∼ 106, 1000 and a few respectively. Since the average
density of matter in the Universe ϱ changes as (1 + z)3, it follows that typical galaxies
must have had ∆ = δϱ/ϱ ≈ 1 at a redshift z ≈ 100. The same argument applied to
clusters and superclusters suggests that they could not have separated out from the
expanding background at redshifts greater than z ∼ 10 and 1 respectively.
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The Wave Equation for the Growth
of Small Density Perturbations (1)

The standard equations of gas dynamics for a fluid in a gravitational field consist of
three partial differential equations which describe (i) the conservation of mass, or the
equation of continuity, (ii) the equation of motion for an element of the fluid, Euler’s
equation, and (iii) the equation for the gravitational potential, Poisson’s equation.

Equation of Continuity :
∂ϱ

∂t
+∇ · (ϱv) = 0 ; (1)

Equation of Motion :
∂v

∂t
+ (v · ∇)v = −

1

ϱ
∇p−∇ϕ ; (2)

Gravitational Potential : ∇2ϕ = 4πGϱ . (3)

These equations describe the dynamics of a fluid of density ϱ and pressure p in which
the velocity distribution is v. The gravitational potential ϕ at any point is given by
Poisson’s equation in terms of the density distribution ϱ.

The partial derivatives describe the variations of these quantities at a fixed point in
space. This coordinate system is often referred to as Eulerian coordinates.
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The Wave Equation for the Growth
of Small Density Perturbations (2)

We need to go through a slightly complex procedure to derive the second-order
differential equation. We need to convert the expressions into Lagrangian coordinates,
which follow the motion of an element of the fluid:

dϱ

dt
= −ϱ∇ · v ; (4)

dv

dt
= −

1

ϱ
∇p−∇ϕ ; (5)

∇2ϕ = 4πGϱ . (6)

Next, we need to put in the uniform expansion of the unperturbed density distribution
v = H0r. The unperturbed solutions are then

dϱ0
d t

= −ϱ0∇ · v0 ; (7)

dv0
dt

= −
1

ϱ0
∇p0 −∇ϕ0 ; (8)

∇2ϕ0 = 4πGϱ0 . (9)
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The Wave Equation for the Growth
of Small Density Perturbations (3)

Then, we perturb the system about the uniform expansion v = H0r:

v = v0 + δv, ϱ = ϱ0 + δϱ, p = p0 + δp, ϕ = ϕ0 + δϕ . (10)

After a bit of algebra, we find the following equation for adiabatic density perturbations
∆ = δϱ/ϱ0:

d2∆

dt2
+2

(
ȧ

a

)
d∆

dt
=

c2s
ϱ0a2

∇2
cδϱ+4πGδϱ . (11)

where the adiabatic sound speed c2s is given by ∂p/∂ϱ = c2s . We now seek wave
solutions for ∆ of the form ∆ ∝ exp i(kc · r − ωt) and hence derive a wave equation
for ∆.

d2∆

dt2
+2

(
ȧ

a

)
d∆

dt
= ∆(4πGϱ0 − k2c2s ) , (12)

where kc is the wavevector in comoving coordinates and the proper wavevector k is
related to kc by kc = ak. This is a key equation we have been seeking.
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The Jeans’ Instability (1)

The differential equation for gravitational instability in a static medium is obtained by
setting ȧ = 0 . Then, for waves of the form ∆ = ∆0 exp i(k · r − ωt), the dispersion
relation,

ω2 = c2sk
2 − 4πGϱ0 , (13)

is obtained.

• If c2sk2 > 4πGϱ0, the right-hand side is positive and the perturbations are
oscillatory, that is, they are sound waves in which the pressure gradient is sufficient
to provide support for the region. Writing the inequality in terms of wavelength,
stable oscillations are found for wavelengths less than the critical Jeans’
wavelength λJ

λJ =
2π

kJ
= cs

(
π

Gϱ

)1/2
. (14)
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The Jeans’ Instability (2)

• If c2sk2 < 4πGϱ0, the right-hand side of the dispersion relation is negative,
corresponding to unstable modes. The solutions can be written

∆ = ∆0 exp(Γt+ ik · r) , (15)

where

Γ = ±
[
4πGϱ0

(
1−

λ2J
λ2

)]1/2
. (16)

The positive solution corresponds to exponentially growing modes. For
wavelengths much greater than the Jeans’ wavelength, λ ≫ λJ, the growth rate Γ

becomes (4πGϱ0)
1/2. In this case, the characteristic growth time for the instability

is

τ = Γ−1 = (4πGϱ0)
−1/2 ∼ (Gϱ0)

−1/2 . (17)

This is the famous Jeans’ Instability and the time scale τ is the typical collapse
time for a region of density ϱ0.
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The Jeans’ Instability (3)

The physics of this result is very simple. The instability is driven by the self-gravity of
the region and the tendency to collapse is resisted by the internal pressure gradient.
Consider the pressure support of a region with pressure p, density ϱ and radius r. The
equation of hydrostatic support for the region is

dp

dr
= −

GϱM(< r)

r2
. (18)

The region becomes unstable when the self-gravity of the region on the right-hand side
of (18) overwhelms the pressure forces on the left-hand side. To order of magnitude,
we can write dp/dr ∼ −p/r and M ∼ ϱr3. Therefore, since c2s ∼ p/ϱ, the region
becomes unstable if r > rJ ∼ cs/(Gϱ)1/2. Thus, the Jeans’ length is the scale which
is just stable against gravitational collapse.

Notice that the expression for the Jeans’ length is just the distance a sound wave
travels in a collapse time.
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The Jeans’ Instability in an Expanding Medium

We return first to the full version of the differential equation for ∆.

d2∆

dt2
+2

(
ȧ

a

)
d∆

dt
= ∆(4πGϱ− k2c2s ) . (19)

The second term 2(ȧ/a)(d∆/dt) modifies the classical Jeans’ analysis in crucial
ways. It is apparent from the right-hand side of (19) that the Jeans’ instability criterion
applies in this case also but the growth rate is significantly modified. Let us work out the
growth rate of the instability in the long wavelength limit λ ≫ λJ, in which case we can
neglect the pressure term c2sk

2. We therefore have to solve the equation

d2∆

dt2
+2

(
ȧ

a

)
d∆

dt
= 4πGϱ0∆ . (20)

Before considering the general solution, let us first consider the special cases Ω0 = 1

and Ω0 = 0 for which the scale factor-cosmic time relations are a = (32H0t)
2/3 and

a = H0t respectively.
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The Jeans’ Instability in an Expanding Medium

The Einstein–de Sitter Critical Model Ω0 = 1. In this case,

4πGϱ =
2

3t2
and

ȧ

a
=

2

3t
. (21)

Therefore,

d2∆

dt2
+

4

3t

d∆

dt
−

2

3t2
∆ = 0 . (22)

By inspection, it can be seen that there must exist power-law solutions of (22) and so
we seek solutions of the form ∆ = atn. Hence

n(n− 1) + 4
3n− 2

3 = 0 , (23)

which has solutions n = 2/3 and n = −1. The latter solution corresponds to a
decaying mode. The n = 2/3 solution corresponds to the growing mode we are
seeking, ∆ ∝ t2/3 ∝ a = (1+ z)−1. This is the key result

∆ =
δϱ

ϱ
∝ (1 + z)−1 . (24)

In contrast to the exponential growth found in the static case, the growth of the
perturbation in the case of the critical Einstein–de Sitter universe is algebraic.
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The Jeans’ Instability in an Expanding Medium

The Empty, Milne Model Ω0 = 0 In this case,

ϱ = 0 and
ȧ

a
=

1

t
, (25)

and hence
d2∆

dt2
+

2

t

d∆

dt
= 0 . (26)

Again, seeking power-law solutions of the form ∆ = atn, we find n = 0 and n = −1,
that is, there is a decaying mode and one of constant amplitude ∆ = constant.

These simple results describe the evolution of small amplitude perturbations,
∆ = δϱ/ϱ ≪ 1. In the early stages of the matter-dominated phase, the dynamics of
the world models approximate to those of the Einstein–de Sitter model, a ∝ t2/3, and
so the amplitude of the density contrast grows linearly with a. In the late stages at
redshifts Ω0z ≪ 1, when the Universe may approximate to the Ω0 = 0 model, the
amplitudes of the perturbations grow very slowly and, in the limit Ω0 = 0, do not grow
at all.
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Perturbing the Friedman solutions

Let us derive the same results from the
dynamics of the Friedman solutions. The
development of a spherical perturbation in
the expanding Universe can be modelled by
embedding a spherical region of density
ϱ+ δϱ in an otherwise uniform Universe of
density ϱ. The parametric solutions for the
dynamics of the world models can be written

a = A(1− cos θ) t = B(θ − sin θ) ;

A =
Ω0

2(Ω0 − 1)
B =

Ω0

2H0(Ω0 − 1)3/2
.
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Perturbing the Friedman solutions

We now compare the dynamics of the region of slightly greater density with that of the
background model. We expand the expressions for a and t to fifth order in θ. The
solution is

a = Ω
1/3
0

(
3H0t

2

)2/3 [
1−

1

20

(
6t

B

)2/3]
. (27)

We can now write down an expression for the change of density of the spherical
perturbation with cosmic epoch

ϱ(a) = ϱ0a
−3

[
1+

3

5

(Ω0 − 1)

Ω0
a

]
. (28)

Notice that, if Ω0 = 1, there is no growth of the perturbation. The density perturbation
may be considered to be a mini-Universe of slightly higher density than Ω0 = 1

embedded in an Ω0 = 1 model. Therefore, the density contrast changes with scale
factor as

∆ =
δϱ

ϱ
=

ϱ(a)− ϱ0(a)

ϱ0(a)
=

3

5

(Ω0 − 1)

Ω0
a . (29)

13



Perturbing the Friedman solutions

This result indicates why density
perturbations grow only linearly with
cosmic epoch. The instability corresponds
to the slow divergence between the
variation of the scale factors with cosmic
epoch of the model with Ω0 = 1 and one
with slightly greater density. This is the
essence of the argument developed by
Tolman and Lemaı̂tre in the 1930s and
developed more generally by Lifshitz in
1946 to the effect that, because the
instability develops only algebraically,
galaxies could not have formed by
gravitational collapse.
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The General Solutions

A general solution of (20) for the growth of the density contrast with scale-factor for all
pressure-free Friedman world models can be rewritten in terms of the density
parameter Ω0 as follows:

d2∆

dt2
+2

(
ȧ

a

)
d∆

dt
=

3Ω0H
2
0

2
a−3∆ , (30)

where, in general,

ȧ = H0

[
Ω0

(
1

a
− 1

)
+ΩΛ(a

2 − 1) + 1
]1/2

. (31)

The solution for the growing mode can be written as follows:

∆(a) =
5Ω0

2

(
1

a

da

dt

) ∫ a

0

da′

(da′/dt)3
, (32)

where the constants have been chosen so that the density contrast for the standard
critical world model with Ω0 = 1 and ΩΛ = 0 has unit amplitude at the present epoch,
a = 1. With this scaling, the density contrasts for all the examples we will consider
correspond to ∆ = 10−3 at a = 10−3. It is simplest to carry out the calculations
numerically for a representative sample of world models.
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Models with ΩΛ = 0

The development of density
fluctuations from a scale factor
a = 1/1000 to a = 1 are shown
for a range of world models with
ΩΛ = 0. These results are
consistent with the calculations
carried out above, in which it was
argued that the amplitudes of the
density perturbations vary as
∆ ∝ a so long as Ω0z ≫ 1, but
the growth essentially stops at
smaller redshifts.
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Models with finite ΩΛ

The models of greatest interest are the
flat models for which (Ω0 +ΩΛ) = 1,
in all cases, the fluctuations having
amplitude ∆ = 10−3 at a = 10−3.
The growth of the density contrast is
somewhat greater in the cases Ω0 =
0.1 and 0.3 as compared with the
corresponding cases with ΩΛ = 0.
The fluctuations continue to grow to
greater values of the scale-factor a,
corresponding to smaller redshifts, as
compared with the models with
ΩΛ = 0.
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Why are these results so different?

The reason for these differences is that, if
ΩΛ = 0, the condition Ω0z = 1, corresponds
to the change from flat to hyperbolic geometry.
This means that neighbouring geodesics are
diverging and reduces the strength of the
gravitational force.

In the case Ω0 +ΩΛ = 1, the geometry is
forced to be Euclidean and so the growth
continues until the repulsive effect of the Λ term
overwhelms the attractive force of gravity. The
changeover takes place at much smaller
redshifts at (1 + z) ≈ Ω

−1/3
0 if Ω0 ≪ 1.

This is good news if we want to suppress the
fluctuations in the Cosmic Microwave
Background Radiation.
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Peculiar Velocities in the Expanding Universe

The development of velocity perturbations in the expanding Universe can be
investigated in the case in which we can neglect pressure gradients so that the velocity
perturbations are only driven by the potential gradient δϕ.

du

dt
+2

(
ȧ

a

)
u = −

1

a2
∇cδϕ . (33)

In (33), u is the perturbed comoving velocity and ∇c is the gradient in comoving
coordinates. We split the velocity vectors into components parallel and perpendicular to
the gravitational potential gradient, u = u∥ + u⊥, where u∥ is parallel to ∇cδϕ. The
velocity associated with u∥ is often referred to as potential motion since it is driven by
the potential gradient. On the other hand, the perpendicular velocity component u⊥ is
not driven by potential gradients and corresponds to vortex or rotational motions.
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Peculiar Velocities in the Expanding Universe

Rotational Velocities. Consider first the rotational component u⊥. The equation for the
peculiar velocity reduces to

du⊥
dt

+2
(
ȧ

a

)
u⊥ = 0 . (34)

The solution of this equation is straightforward u⊥ ∝ a−2. Since u⊥ is a comoving
perturbed velocity, the proper velocity is δv⊥ = au⊥ ∝ a−1. Thus, the rotational
velocities decay as the Universe expands.

This is no more than the conservation of angular momentum in an expanding medium,
mvr = constant. This poses a grave problem for models of galaxy formation involving
primordial turbulence. Rotational turbulent velocities decay and there must be sources
of turbulent energy, if the rotational velocities are to be maintained.
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Peculiar Velocities in the Expanding Universe

Potential Motions. The development of potential motions can be directly derived from
the equation

d∆

dt
= −∇ · δv , (35)

that is, the divergence of the peculiar velocity is proportional to minus the rate of growth
of the density contrast. For the case Ω0 = 1,

|δv∥| = |au| =
H0a

1/2

k

(
δϱ

ϱ

)
0
=

H0

k

(
δϱ

ϱ

)
0
(1 + z)−1/2 , (36)

where (δϱ/ϱ)0 is the density contrast at the present epoch. Thus, δv∥ ∝ t1/3.

The peculiar velocities are driven by both the amplitude of the perturbation and its
scale. Equation (36) shows that, if δϱ/ϱ is the same on all scales, the peculiar velocities
are driven by the smallest values of k, that is, by the perturbations on the largest
physical scales. This is an important result for understanding the origin of the peculiar
motion of the Galaxy with respect to the frame of reference in which the Microwave
Background Radiation is 100% isotropic and of large-scale streaming velocities.
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The Relativistic Case

In the radiation-dominated phase of the Big Bang, the primordial perturbations are in a
radiation-dominated plasma, for which the relativistic equation of state p = 1

3ε is
appropriate.

The equation of energy conservation becomes
∂ϱ

∂t
= −∇ ·

(
ϱ+

p

c2

)
v; (37)

∂

∂t

(
ϱ+

p

c2

)
=

ṗ

c2
−
(
ϱ+

p

c2

)
(∇ · v) . (38)

Substituting p = 1
3ϱc

2 into (37) and (38), the relativistic continuity equation is obtained:

dϱ

dt
= −4

3ϱ(∇ · v) . (39)

Euler’s equation for the acceleration of an element of the fluid in the gravitational
potential ϕ becomes(

ϱ+
p

c2

) [
∂v

∂t
+ (v · ∇)v

]
= −∇p−

(
ϱ+

p

c2

)
∇ϕ . (40)
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The Relativistic Case

If we neglect the pressure gradient term, (40) reduces to the familiar equation

dv

dt
= −∇ϕ . (41)

Finally, the differential equation for the gravitational potential ϕ becomes

∇2ϕ = 4πG
(
ϱ+

3p

c2

)
. (42)

For a fully relativistic gas, p = 1
3ϱc

2 and so

∇2ϕ = 8πGϱ . (43)

The net result is that the equations for the evolution of the perturbations in a relativistic
gas are of similar mathematical form to the non-relativistic case. The same type of
analysis which was carried out above leads to the following equation

d2∆

dt2
+2

(
ȧ

a

)
d∆

dt
= ∆

(
32πGϱ

3
− k2c2s

)
. (44)
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The Relativistic Case

The relativistic expression for the Jeans’ length is found by setting the right-hand side
equal to zero,

λJ =
2π

kJ
= cs

(
3π

8Gϱ

)1/2
, (45)

where cs = c/
√
3 is the relativistic sound speed. The result is similar to the standard

expression for the Jeans’ length.

Neglecting the pressure gradient terms in (44), the following differential equation for the
growth of the instability is obtained

d2∆

dt2
+2

(
ȧ

a

)
d∆

dt
−

32πGϱ

3
∆ = 0 . (46)

We again seek solutions of the form ∆ = atn, recalling that in the radiation-dominated
phases, the scale factor-cosmic time relation is given by a ∝ t1/2. We find solutions
n = ±1. Hence, for wavelengths λ ≫ λJ, the growing solution corresponds to

∆ ∝ t ∝ a2 ∝ (1 + z)−2 . (47)

Thus, once again, the unstable mode grows algebraically with cosmic time.
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The Basic Problem of Structure Formation

Let us summarise the implications of the key results derived above. Throughout the
matter- dominated era, the growth rate of perturbations on physical scales much
greater than the Jeans’ length is

∆ =
δϱ

ϱ
∝ a =

1

1+ z
. (48)

Since galaxies and astronomers certainly exist at the present day z = 0, it follows that
∆ ≥ 1 at z = 0 and so, at the last scattering surface, z ∼ 1,000, fluctuations must
have been present with amplitude at least ∆ = δϱ/ϱ ≥ 10−3.

• The slow growth of density perturbations is the source of a fundamental problem in
understanding the origin of galaxies – large-scale structures did not condense out
of the primordial plasma by exponential growth of infinitesimal statistical
perturbations.

• Because of the slow development of the density perturbations, we have the
opportunity of studying the formation of structure on the last scattering surface at a
redshift z ∼ 1,000.
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Matter and Radiation in the Universe

The Cosmic Microwave Background Radiation provides by far the greatest contribution
to the energy density of radiation in intergalactic space. Comparing the inertial mass
density in the radiation and the matter, we find

ϱr

ϱm
=

aT4(z)

Ω0ϱc(1 + z)3c2
=

2.48× 10−5(1 + z)

Ω0h2
. (49)

Thus, at redshifts z ≥ 4× 104Ω0h
2, the Universe was certainly radiation-dominated,

even before we take account of the contribution of the three types of neutrino to the
inertial mass density during the radiation-dominated phase, and the dynamics are
described by the relation, a ∝ t1/2. According to this analysis, the Universe is
matter-dominated at redshifts z ≤ 4× 104Ω0h

2 and the dynamics are described by
the standard Friedman models, a ∝ t2/3 provided Ω0z ≫ 1.

The present photon-to-baryon ratio is another key cosmological parameter. Assuming
T = 2.728 K,

Nγ

NB
=

3.6× 107

ΩBh
2

. (50)
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Summary of the Thermal History of the Universe

This diagram summarises the key
epochs in the thermal history of the
Universe. The key epochs are

• The epoch of recombination.
• The epoch of equality of matter

and radiation.
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The Epoch of Recombination

At a redshift z ≈ 1500, the radiation temperature of the Cosmic Microwave
Background Radiation was T ≈ 4,000 K and then there were sufficient photons with
energies E = hν ≥ 13.6 eV in the tail of the Planck distribution to ionise most of the
neutral hydrogen present in the intergalactic medium.

It is a useful calculation to work out the fraction of photons in the high frequency tail of
the Planck distribution, that is, in the Wien region of the spectrum, with energies
hν ≥ E in the limit hν ≫ kT .

n(≥ E) =
∫ ∞

E/h

8πν2

c3
dν

ehν/kT
=

1

π2

(
2πkT

hc

)3
e−x(x2 +2x+2) , (51)

where x = hν/kT . Now, the total number density of photons in a black-body spectrum
at temperature T is

N = 0.244
(
2πkT

hc

)3
m−3 . (52)
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The Epoch of Recombination

Therefore, the fraction of the photons of the black-body spectrum with energies greater
than E is

n(≥ E)

nph
=

e−x(x2 +2x+2)

0.244π2
. (53)

Roughly speaking, the intergalactic gas will be ionised, provided there are as many
ionising photons with hν ≥ 13.6 eV as there are hydrogen atoms, that is, we need only
one photon in 3.6× 107/Ω0h

2 of the photons of the Cosmic Microwave Background
Radiation to have energy greater than 13.6 eV to ionise the gas. For illustrative
purposes, let us take the ratio to be one part in 109 Then, we need to solve

1

109
=

e−x(x2 +2x+2)

0.244π2
. (54)

We find x = E/kT ≈ 26.5. There are so many photons relative to hydrogen atoms
that the temperature of the radiation can be 26.5 times less than that found from setting
E = kT and there are still sufficient photons with energy E ≥ 13.6 eV to ionise the
gas. Therefore, the intergalactic gas was largely ionised at a temperature of
150,000/26.5 K ≈ 5,600 K.
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The Ionisation of the Intergalactic
Gas Through the Epoch of Recombination

The optical depth of the intergalactic gas increases rapidly with redshift once the gas
becomes fully ionised. Temperature fluctuations which originate at redshifts greater
than the redshift of recombination are damped out by Thomson scattering. The
fluctuations we observe originate in a rather narrow redshift range about that at which
the optical depth of the intergalactic gas is unity.

At the epoch of recombination, the plasma was 50% ionised when the temperature of
the background radiation was about 4,000 K. Photons emitted in the recombination of
hydrogen atoms must have energies hν ≥ hνα, where να is the frequency of the
Lyman-α transition which has wavelength 121.6 nm. These photons can either reionise
other hydrogen atoms directly, or else raise them to an excited state H∗, from which the
electron can be ejected by the much more plentiful soft photons in the black-body
spectrum.

The Lyman-α photons are destroyed by the two-photon process in which two photons
are liberated from the 2s state of hydrogen in a rare quadrupole transition with
spontaneous transition probability w = 8.23 sec−1.
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The Probability Distribution of Last Scattering

Jones and Wyse (1985) provided a convenient analytic expression for the degree of
ionisation through the critical redshift range:

x = 2.4× 10−3(Ω0h
2)1/2

ΩBh
2

(
z

1000

)12.75
. (55)

Ω0 is the density parameter for the Universe as a whole and ΩB the density parameter
of baryons. The optical depth of the intergalactic gas at redshifts z ∼ 1000 is

τ = 0.37
(

z

1000

)14.25
. (56)

Because of the enormously strong dependence upon redshift, the optical depth of the
intergalactic gas is always unity very close to a redshift of 1070, independent of the
exact values of Ω0, ΩB and h. This probability distribution for the range of redshifts
from which the photons of the background radiation we observe today were last
scattered is given by

p(z) dz = e−τdτ

dz
dz , (57)

which can be closely approximated by a Gaussian distribution with mean redshift 1070
and standard deviation σ = 80 in redshift.
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The Probability Distribution of Last Scattering

Improved calculations were carried out
by Chluba and Sunyaev (2006) in which
the populations of the excited states
departed from their equilibrium
distributions.
The top diagram shows the fractional
ionisation and the lower diagram the
probability distribution of last scattering.
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Fluctuations at the Last Scattering Layer

The physical scale at the present epoch corresponding to the thickness of the last
scattering layer is given by

dr =
c

H0

dz

z3/2Ω
1/2
0

. (58)

If we take the thickness of the last scattering layer to correspond to a redshift interval
∆z = 195 at z = 1090, this is equivalent to a physical scale of
16.2(Ω0h

2)−1/2 = 42 Mpc at the present epoch. The mass contained within this
scale is M ≈ 6× 1014(Ω0h

2)−1/2M⊙ ∼ 1.6× 1015M⊙, corresponding roughly to
the mass of a cluster of galaxies.

The comoving scale of d = 16.2(Ω0h
2)−1/2 Mpc corresponds to a proper distance

d/(1 + z) at redshift z and hence to an angular size

θ =
d(1 + z)

D
=

16.2(Ω0h
2)−1/2

DMpc
= 5.8Ω

1/2
0 arcmin = 3.2arcmin , (59)

since D = 2c/H0Ω0, if Ω0z ≫ 1.
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Perturbations on the Last Scattering Layer

The diagram shows schematically the
size of various small perturbations
compared with the thickness of the last
scattering layer. On very large scales,
the perturbations are very much larger
than the thickness of the layer. On
scales less than clusters of galaxies,
many perturbations overlap, reducing
the amplitude of the perturbations.
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The Sound Speed as a Function of Cosmic Epoch

All sound speeds are proportional to the square root of the ratio of the pressure which
provides the restoring force to the inertial mass density of the medium. The speed of
sound cs is given by

c2s =

(
∂p

∂ϱ

)
S

, (60)

where the subscript S means ‘at constant entropy’, that is, we consider adiabatic sound
waves. From the epoch when the energy densities of matter and radiation were equal
to beyond the epoch of recombination, the dominant contributors to p and ϱ change
dramatically as the Universe changes from being radiation- to matter-dominated. The
sound speed can then be written

c2s =
(∂p/∂T )r

(∂ϱ/∂T )r + (∂ϱ/∂T )m
, (61)

where the partial derivatives are taken at constant entropy. It is straightforward to show
that this reduces to the following expression:

c2s =
c2

3

4ϱr
4ϱr +3ϱm

. (62)
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The Sound Speed as a Function of Cosmic Epoch

Thus, in the radiation-dominated era, z ≫ 4× 104Ω0h
2, ϱr ≫ ϱm and the speed of

sound tends to the relativistic sound speed, cs = c/
√
3.

At smaller redshifts, the sound speed decreases as the contribution of the inertial mass
density of the matter becomes more important. Between the epoch of equality of the
matter and radiation energy densities and the epoch of the recombination, the pressure
of sound waves is provided by the radiation, but the inertia is provided by the matter.
Thus, the speed of sound decreases to

cs =

(
4c2

9

ϱr

ϱm

)1/2
=

[
4aT4

0 (1 + z)

9Ωmϱc

]1/2
=

106z1/2

(Ωmh2)1/2
m s−1 . (63)

After recombination, the sound speed is the thermal sound speed of the matter which,
because of the close coupling between the matter and the radiation, has temperature
Tr = Tm at redshifts z ≥ 550h2/5Ω

1/5
0 . Thus, at a redshift of 500, the temperature of

the gas was 1300 K.
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The Damping of Sound Waves

Although the matter and radiation are closely coupled throughout the pre-recombination
era, the coupling is not perfect and radiation can diffuse out of the density
perturbations. Since the radiation provides the restoring force for support for the
perturbation, the perturbation is damped out if the radiation has time to diffuse out of it.
This process is often referred to as Silk damping.

At any epoch, the mean free path for scattering of photons by electrons is
λ = (NeσT)−1, where σT = 6.665× 10−29 m2 is the Thomson cross-section. The
distance which the photons can diffuse is

rD ≈ (Dt)1/2 =
(
1
3λct

)1/2
, (64)

where t is cosmic time. The baryonic mass within this radius, MD = (4π/3)r3DϱB, can
now be evaluated for the pre-recombination era.
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The Simple Baryonic Picture

We can put together all these ideas
to develop the simplest picture of
galaxy formation. This is the
simplest baryonic picture. It
includes many of the features
which will reappear in the ΛCDM
picture. The diagram shows how
the horizon mass MH, the Jeans
mass MJ and the Silk Mass MD

change with scale factor a.
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The Simple Baryonic Picture

This diagram, from Coles and
Lucchin (1995), shows
schematically how structure
develops in a purely baryonic
Universe. The problem is that
the temperature fluctuations on
the last scattering surface are
expected to be at least
∆T/T ∼ 10−3, far in excess of
the observed limits.
The solution to this problem
came with the realisation that
the dark matter is the dominant
contribution to Ω0.
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Instabilities in the Presence of Dark Matter

Neglecting the internal pressure of the fluctuations, the expressions for the density
contrasts in the baryons and the dark matter, ∆B and ∆D respectively, can be written
as a pair of coupled equations

∆̈B +2
(
ȧ

a

)
∆̇B = AϱB∆B +AϱD∆D , (65)

∆̈D +2
(
ȧ

a

)
∆̇D = AϱB∆B +AϱD∆D . (66)

Let us find the solution for the case in which the dark matter has Ω0 = 1 and the
baryon density is negligible compared with that of the dark matter. Then (65) reduces to
the equation for which we have already found the solution ∆D = Ba where B is a
constant. Therefore, the equation for the evolution of the baryon perturbations becomes

∆̈B +2
(
ȧ

a

)
∆̇B = 4πGϱDBa . (67)
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Instabilities in the Presence of Dark Matter

Since the background model is the critical model, equation (67) simplifies to

a3/2
d

da

(
a−1/2d∆

da

)
+2

d∆

da
= 3

2B . (68)

The solution, ∆ = B(a− a0), satisfies (68). This result has the following significance.
Suppose that, at some redshift z0, the amplitude of the baryon fluctuations is very
small, that is, very much less than that of the perturbations in the dark matter. The
above result shows how the amplitude of the baryon perturbation develops
subsequently under the influence of the dark matter perturbations. In terms of redshift
we can write

∆B = ∆D

(
1−

z

z0

)
. (69)

Thus, the amplitude of the perturbations in the baryons grows rapidly to the same
amplitude as that of the dark matter perturbations. The baryons fall into the dark matter
perturbations and rapidly attain amplitudes the same as those of the dark matter.
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The Cold Dark Matter Picture

This diagram shows how structure
develops in a cold dark matter
dominated Universe. The
amplitudes of the baryonic
perturbations were very much
smaller than those in the cold dark
matter at the epoch of
recombination.

Note also the origin of the acoustic
peaks in the predicted mass
spectrum (from Sunyaev and
Zeldovich 1970).

This is the favoured model for the
formation structure.
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The Initial Power-Spectrum

The smoothness of the two-point correlation function for galaxies suggest that the
spectrum of initial fluctuations must have been very broad with no preferred scales and
it is therefore natural to begin with a power spectrum of power-law form

P (k) = |∆k|2 ∝ kn . (70)

The correlation function ξ(r) should then have the form

ξ(r) ∝
∫ sin kr

kr
k(n+2) dk . (71)

Because the function sin kr/kr has value unity for kr ≪ 1 and decreases rapidly to
zero when kr ≫ 1, we can integrate k from 0 to kmax ≈ 1/r to estimate the
dependence of the amplitude of the correlation function on the scale r.

ξ(r) ∝ r−(n+3) . (72)

Since the mass of the fluctuation is proportional to r3, this result can also be written in
terms of the mass within the fluctuations on the scale r, M ∼ ϱr3.

ξ(M) ∝ M−(n+3)/3 . (73)
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The Initial Power-Spectrum

Finally, to relate ξ to the root-mean-square density fluctuation on the mass scale M ,
∆(M), we take the square root of ξ, that is,

∆(M) =
δϱ

ϱ
(M) = ⟨∆2⟩1/2 ∝ M−(n+3)/6 . (74)

This spectrum has the important property that the density contrast ∆(M) had the
same amplitude on all scales when the perturbations came through their particle
horizons, provided n = 1. Let us illustrate how this comes about.

Before the perturbations came through their particle horizons and before the epoch of
equality of matter and radiation energy densities, the density perturbations grew as
∆(M) ∝ a2, although the perturbation to the gravitational potential was frozen-in.
Therefore, the development of the spectrum of density perturbations can be written

∆(M) ∝ a2M−(n+3)/6 . (75)
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The Initial Power-Spectrum

A perturbation of scale r came through the horizon when r ≈ ct, and so the mass of
dark matter within it was MD ≈ ϱD(ct)3. During the radiation dominated phases,
a ∝ t1/2 and the number density of dark matter particles, which will eventually form
bound structures at z ∼ 0, varied as ND ∝ a−3.

Therefore, the horizon dark matter mass increased as MH ∝ a3, or, a ∝ M
1/3
H . The

mass spectrum ∆(M)H when the fluctuations came through the horizon at different
cosmic epochs was

∆(M)H ∝ M2/3M−(n+3)/6 = M−(n−1)/6 . (76)

Thus, if n = 1, the density perturbations ∆(M) = δϱ/ϱ(M) all had the same
amplitude when they came though their particle horizons during the
radiation-dominated era.
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The Harrison–Zeldovich Power Spectrum

The constraints on the form
of the perturbation spectrum
in 1971 derived by Sunyaev
and Zeldovich.

They put in what was
needed to produce the
observed structures today.

Sunyaev and Zeldovich used a variety of
constraints to derive the form of the initial
power-spectrum of density perturbations as they
came through the horizon. They found a
scale-invariant spectrum δϱ/ϱ = 10−4 on mass
scales from 105 to 1020M⊙.

Harrison studied the form the primordial spectrum
must have in order to prevent the overproduction of
excessively large amplitude perturbations on small
and large scales. A power spectrum of the form

P (k) ∝ k (77)

does not diverge on large physical scales and so is
consistent with the observed large-scale isotropy of
the Universe.
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Processing of the Initial Power Spectrum

We do not observe the initial power-spectrum except on the largest physical scales.
The transfer function T (k) which describes how the shape of the initial power-spectrum
∆k(z) in the dark matter is modified by different physical processes through the
relation

∆k(z = 0) = T (k) f(z)∆k(z) . (78)

∆k(z = 0) is the power spectrum at the present epoch and f(z) ∝ a ∝ t2/3 is the
linear growth factor between the scale factor at redshift z and the present epoch in the
matter dominated era.

The form of the transfer function is largely determined by the fact that there is a delay in
the growth of the perturbations between the time when they came through the horizon
and began to grow again. In the standard cold dark matter picture, this is associated
with the fact that before the epoch of equality of matter and radiation, the oscillations in
the photon-baryon plasma were dynamically more important than those in the dark
matter.
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The Processed Harrison–Zeldovich Power Spectrum

Notice that on very large scales (small wavenumbers) the spectrum is unprocessed. On
the scale of galaxies and clusters, the spectrum has been strongly modified.
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The Processed Harrison–Zeldovich Power Spectrum
Adding in the Baryons

Four examples of the transfer functions
for models of structure formation with
baryons only (top pair of diagrams) and
with mixed cold and baryonic models
(bottom pair of diagrams) by Eisenstein
and Hu. The numerical results are shown
as solid lines and their fitting functions by
dashed lines. The lower small boxes in
each diagram show the percentage
residuals to their fitting functions, which
are always less than 10%.
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The Acoustic Oscillations in the Galaxy Distribution

AAT 2dF galaxy survey

SDSS galaxy survey
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The Non-linear Collapse of Density Perturbations

The collapse of a uniform spherical density perturbation in an otherwise uniform
Universe can be worked out exactly, a model sometimes referred to as spherical top-hat
collapse. The dynamics are the same as those of a closed Universe with Ω0 > 1. The
variation of the scale factor of the perturbation ap is given by the parametric solution

ap = A(1− cos θ) t = B(θ − sin θ) ,

A =
Ω0

2(Ω0 − 1)
and B =

Ω0

2H0(Ω0 − 1)3/2
.

The perturbation reached maximum radius at θ = π and then collapsed to infinite
density at θ = 2π. The perturbation stopped expanding, ȧp = 0, and separated out of
the expanding background at θ = π. This occurred when the scale factor of the
perturbation was a = amax, where

amax = 2A =
Ω0

Ω0 − 1
at time tmax = πB =

πΩ0

2H0(Ω0 − 1)3/2
. (79)
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Perturbing the Friedman solutions

This result indicates why density
perturbations grow only linearly with
cosmic epoch. The instability corresponds
to the slow divergence between the
variation of the scale factors with cosmic
epoch of the model with Ω0 = 1 and one
with slightly greater density. This is the
essence of the argument developed by
Tolman and Lemaı̂tre in the 1930s and
developed more generally by Lifshitz in
1946 to the effect that, because the
instability develops only algebraically,
galaxies could not have formed by
gravitational collapse.
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The Non-linear Collapse of Density Perturbations

The density of the perturbation at maximum scale factor ρmax can now be related to
that of the background ρ0, which, for illustrative purposes, we take to be the critical
model, Ω0 = 1. Recalling that the density within the perturbation was Ω0 times that of
the background model to begin with,

ρmax

ρ0
= Ω0

(
a

amax

)3
= 9π2/16 = 5.55 , (80)

where the scale factor of the background model has been evaluated at cosmic time
tmax. Thus, by the time the perturbed sphere had stopped expanding, its density was
already 5.55 times greater than that of the background density.

Interpreted literally, the spherical perturbed region collapsed to a black hole. It is much
more likely to form some sort of bound object. The temperature of the gaseous
baryonic matter increased until internal pressure gradients became sufficient to balance
the attractive force of gravitation. For the cold dark matter, during collapse, the cloud
fragmented into sub-units and then, through the process of violent relaxation, these
regions came to a dynamical equilibrium under the influence of large scale gravitational
potential gradients.
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The Non-linear Collapse of Density Perturbations

The end result is a system which satisfies the Virial Theorem. At amax, the sphere is
stationary and all the energy of the system is in the form of gravitational potential
energy. For a uniform sphere of radius rmax, the gravitational potential energy is
−3GM2/5rmax. If the system does not lose mass and collapses to half this radius, its
gravitational potential energy becomes −3GM2/(5rmax/2) and, by conservation of
energy, the kinetic energy, or internal thermal energy, acquired is

Kinetic Energy =
3GM2

5(rmax/2)
−

3GM2

5rmax
=

3GM2

5rmax
. (81)

By collapsing by a factor of two in radius from its maximum radius of expansion, the
kinetic energy, or internal thermal energy, becomes half the negative gravitational
potential energy, the condition for dynamical equilibrium according to the Virial
Theorem. Therefore, the density of the perturbation increased by a further factor of 8,
while the background density continues to decrease.
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The Non-linear Collapse of Density Perturbations

The scale factor of the perturbation reached the value amax/2 at time
t = (1.5+ π−1)tmax = 1.81tmax, when the background density was a further factor
of (t/tmax)2 = 3.3 less than at maximum. The net result of these simple calculations
is that, when the collapsing cloud became a bound virialised object, its density was
5.55× 8× 3.3 ≈ 150 times the background density at that time.

These simple calculations illustrate how structure forms according to the large scale
simulations. They show that galaxies and clusters must have formed rather later than
the simple estimates we gave in the second lecture. According to Coles and Lucchin,
the systems become virialised at a time t ≈ 3tmax when the density contrast was
about 400.

Using these arguments, galaxies of mass M ≈ 1012 M⊙ could not have been
virialised at redshifts greater than 10 and clusters of galaxies cannot have formed at
redshifts much greater than one.
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The Zeldovich Approximation
The next approximation is to assume that the perturbations were ellipsoidal with three
unequal principal axes. In the Zeldovich approximation, the development of
perturbations into the non-linear regime is followed in Lagrangian coordinates. If x and
r are the proper and comoving position vectors of the particles of the fluid, the
Zeldovich approximation can be written

x = a(t)r + b(t)p(r) . (82)

The first term on the right-hand side describes the uniform expansion of the
background model and the second term the perturbations of the particles’ positions
about the Lagrangian (or comoving) coordinate r. Zeldovich showed that, in the
coordinate system of the principal axes of the ellipsoid, the motion of the particles in
comoving coordinates is described by a ‘deformation tensor’ D

D =

a(t)− αb(t) 0 0
0 a(t)− βb(t) 0
0 0 a(t)− γb(t)

 . (83)

Because of conservation of mass, the density ϱ in the vicinity of any particle is

ϱ[a(t)− αb(t)][a(t)− βb(t)][a(t)− γb(t)] = ϱ̄a3(t) , (84)

where ϱ̄ is the mean density of matter in the Universe.
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The Zeldovich Approximation

The clever aspect of the Zeldovich solution is that, although the constants α, β and γ

vary from point to point in space depending upon the spectrum of the perturbations, the
functions a(t) and b(t) are the same for all particles. In the case of the critical model,
Ω0 = 1,

a(t) =
1

1+ z
=

(
t

t0

)2/3
and b(t) =

2

5

1

(1 + z)2
=

2

5

(
t

t0

)4/3
, (85)

where t0 = 2/3H0. The function b(t) has exactly the same dependence upon scale
factor (or cosmic time) as was derived from perturbing the Friedman solutions.

If we consider the case in which α > β > γ, collapse occurs most rapidly along the
x-axis and the density becomes infinite when a(t)− αb(t) = 0. At this point, the
ellipsoid has collapsed to a ‘pancake’ and the solution breaks down for later times.
Although the density becomes formally infinite in the pancake, the surface density
remains finite, and so the solution still gives the correct result for the gravitational
potential at points away from the caustic surface. The Zeldovich approximation cannot
deal with the more realisitic situation in which collapse of the gas cloud into the pancake
gives rise to strong shock waves, which heat the matter falling into the pancake.
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The Zeldovich Approximation

The results of numerical N-body simulations have shown that the Zeldovich
approximation is quite remarkably effective in describing the evolution of the non-linear
stages of the collapse of large scale structures up to the point at which caustics are
formed.

N-body Simulation Zeldovich Approximation
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Non-Linear Development of the
Density Perturbations

It is evident from the power-law form of the two-point correlation function for galaxies
ξ(r) = (r/r0)

−1.8 that on scales much larger than the characteristic length scale
r0 ≈ 7 Mpc, the perturbations are still in the linear stage of development and so
provide directly information about the form of the processed initial power spectrum.

On scales r ≤ r0, the perturbations become non-linear and it might seem more difficult
to recover information about the processed power-spectrum on these scales. An
important insight was provided by Hamilton and his colleagues who showed how it is
possible to relate the observed spectrum of perturbations in the non-linear regime,
ξ(r) ≥ 1, to the processed initial spectrum in the linear regime.
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Non-Linear Development of the
Density Perturbations

The variation of the spatial two-point
correlation function with the square of
the scale factor as the perturbations
evolve from linear to non-linear
amplitudes to bound systems.

The corresponding evolution of the
spatial two-point correlation function as
a function of redshift, normalised to
result in a two-point correlation function
for galaxies which has slope −1.8.
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The Modified Initial Power Spectrum

Max Tegmark and his
colleagues have shown
how many other pieces of
data are consistent with
this picture. Note:
• Overlap of WMAP

and SDSS power
spectra.

• Statistics of
gravitational lensing.

• Power spectrum of
neutral hydrogen
clouds.

61


