
Fundamentals of Cosmology
(2) The Standard Cosmological Models

• Friedman’s equations

• Models with finite cosmological constant

• Space-time diagrams revisited
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Newtonian Cosmological Models

In 1934, Milne and McCrea showed that the structure
of the Friedman equations can be derived using
non-relativistic Newtonian dynamics. Consider a
galaxy at distance x from the Earth and determine its
deceleration due to the gravitational attraction of the
matter inside the sphere of radius x centred on the
Earth. By Gauss’s theorem, because of the spherical
symmetry of the distribution of matter within x, we can
replace that mass, M = (4π/3)ϱx3, by a point mass
at the centre of the sphere and so the deceleration of
the galaxy is

mẍ = −
GMm

x2
= −

4πxϱm

3
. (1)

The mass of the galaxy m cancels out on either side of
the equation, showing that the deceleration refers to
the sphere of matter as a whole rather than to any
particular galaxy.
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We now introduce comoving coordinates. We are dealing with isotropic Universes
which expand uniformly. We therefore introduce the concept of comoving distance. If
the distance between two points expanding with the Universe is x and r is their
separation at the present epoch, we can write x = (a/a0)r and so take out the
expansion of the Universe. I will normally set the scale factor equal to unity at the
present epoch, a0 = 1 for simplicity. a is the scale factor.

We can also express the density in terms of its value at the present epoch, ϱ = ϱ0a
−3.

Therefore,

ä = −
4πGϱ0
3a2

or ä = −
4πGϱa

3
, (2)

Multiplying (2) by ȧ and integrating, we find

ȧ2 =
8πGϱ0
3a

+ constant or ȧ2 =
8πGϱa2

3
+ constant. (3)

This Newtonian calculation shows that we can identify the left-hand side of (3) with the
kinetic energy of expansion of the fluid and the first term on the right-hand side with its
gravitational potential energy.
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Why Does this Argument Work?

The above analysis brings out a number of important features of the Friedman world
models.

• Note that, because of the assumption of isotropy, local physics is also global
physics. The same physics which defines the local behaviour of matter also defines
its behaviour on the largest scales. For example, the curvature of space κ within
one cubic metre is exactly the same as that on the scale of the Universe itself.

• Although we might appear to have placed the Earth in a rather special position, an
observer located on any galaxy would perform exactly the same calculation to work
out the deceleration of any other galaxy relative to the observer’s galaxy because
of the cosmological principle which asserts that all fundamental observers should
observe the same large scale features of the Universe at the same epoch. The
Newtonian calculation applies for all observers who move in such a way that the
Universe appears isotropic to them which is, by definition, for all fundamental
observers.

4



Einstein’s Field Equations

In the full GR analysis, Einstein’s field equations reduce to the following pair of
independent equations.

ä = −
4πG

3
a

(
ϱ+

3p

c2

)
+
[
1
3Λa

]
; (4)

ȧ2 =
8πGϱ

3
a2 −

c2

ℜ2
+
[
1
3Λa

2
]
. (5)

In these equations, a is the scale factor, ϱ is the total inertial mass density of the matter
and radiation content of the Universe and p the associated total pressure. ℜ is the
radius of curvature of the geometry of the world model at the present epoch and so the
term −c2/ℜ2 is simply a constant of integration. The cosmological constant Λ, which
has been included in the terms in square brackets in (4) and (5), has had a chequered
history since it was introduced by Einstein in 1917.
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The Meaning of the Term ϱ+ 3p
c2

Let us look more closely at the meanings of the various terms. Equation (5) is referred
to as Friedman’s equation and has the form of an energy equation, the term on the
left-hand side corresponding to the kinetic energy of the expanding fluid and the first
term on the right-hand side to its gravitational potential energy. The First Law of
Thermodynamics in its relativistic form needs to be built into this equation. We can
write it in the usual form

dU = −pdV . (6)

We need to formulate the first law in such a way that it is applicable for relativistic and
non-relativistic fluids and so we write the internal energy U as the sum of all the terms
which can contribute to the total energy of the fluid in the relativistic sense. Thus, the
total internal energy consists of the fluid’s rest mass energy, its kinetic energy, its
thermal energy and so on. If we write the sum of these energies as εtot =

∑
i εi, the

internal energy is εtotV and so, differentiating (6) with respect to a, it follows that

d

da
(εtotV ) = −p

dV

da
. (7)
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Now, V ∝ a3 and so, differentiating, we find

dεtot
da

+3
(εtot + p)

a
= 0 . (8)

This result can be expressed in terms of the inertial mass density associated with the
total energy εtot = ϱc2 and so (8) can also be written

dϱ

da
+3

(
ϱ+

p

c2

)
a

= 0 . (9)

This is the type of density ϱ which should be included in (4) and (5).

These equations lead to a number of important results which we will use repeatedly in
what follows. First of all, suppose the fluid is very ‘cold’ in the sense that p ≪ ϱ0c

2,
where ϱ0 is its rest mass density. Then, setting p = 0 and ε0 = Nmc2, where N is the
number density of particles of rest mass m, we find

dN

da
+

3N

a
= 0 and so N = N0a

−3 , (10)

that is, the continuity equation.
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The Thermal Gas

Next, the thermal pressure of non-relativistic matter can be included into (8). For
essentially all our purposes, we will be dealing with monatomic gases or plasmas for
which the thermal energy is εth = 3

2NkT and p = NkT .

Then, substituting εtot =
3
2NkT +Nmc2 and p = NkT into (8), we find

d

da

(
3
2NkT +Nmc2

)
+3

5
2NkT +Nmc2

a

 = 0 ,

d(NkT )

da
+

5NkT

a
= 0 and so NkT = N0kT0a

−5 . (11)

Since N = N0a
−3, we find the standard result for the adiabatic expansion of a

monatomic gas with ratio of specific heats γ = 5/3, T ∝ a−2. More generally, if the
ratio of specific heats of the gas is γ, the temperature changes as

T ∝ a−3(γ−1).
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Peculiar Velocities and the Relativistic Gas

We can deduce another important result from T ∝ a−2. If we write εth = 1
2Nm⟨v2⟩,

we find that

⟨v2⟩ ∝ a−2.

Thus, the random velocities of the particles of the gas decrease as v ∝ a−1. This
result applies equally to the random motions of galaxies relative to the mean Hubble
flow, what are known as the peculiar velocities of galaxies, vpec. Therefore, as the
Universe expands, we expect the peculiar velocities of galaxies to decrease as
vpec ∝ a−1.

Finally, in the case of a gas of ultrarelativistic particles, or a gas of photons, we can
write p = 1

3εtot. Therefore,

dεtot
da

+
4εtot
a

= 0 and so εtot ∝ a−4 . (12)

In the case of a gas of photons, εrad =
∑

Nhν and, since N ∝ a−3, we find ν ∝ a−1.
The purpose of these calculations is to show how (8) and (9) correctly describe the law
of conservation of energy for both relativistic and non-relativistic gases.
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Let us now return to the analysis of (5). Differentiating

ȧ2 =
8πGϱ

3
a2 −

c2

ℜ2
+
[
1
3Λa

2
]
. (13)

with respect to time and dividing through by ȧ, we find

ä =
4πGa2

3

dϱ

da
+

8πGϱa2

3
+
[
1
3Λa

]
. (14)

Now, substituting the expression for dϱ/da from (9), we find

ä = −
4πG

3
a

(
ϱ+

3p

c2

)
+
[
1
3Λa

]
, (15)

that is, we recover (4).

Thus, equation (15) has the form of a force equation, but, as we have shown, it also
incorporates the relativistic form of the First Law of Thermodynamics as well. This
pressure term can be considered a ‘relativistic correction’ to the inertial mass density,
but it is unlike normal pressure forces which depend upon the gradient of the pressure
and, for example, hold up the stars. The term ϱ+ (3p/c2) can be thought of as playing
the role of an active gravitational mass density.
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The Cosmological Constant Λ

Einstein’s introduction of the cosmological constant predated Hubble’s discovery of the
expansion of the distribution of galaxies. In 1917, Einstein introduced the Λ-term in
order to incorporate Mach’s principle into General Relativity - namely that the local
inertial frame of reference should be defined relative to the distant stars. In the process,
he derived the first fully self-consistent cosmological model - the static Einstein model
of the Universe.

Equation (4) is

ä = −
4πG

3
a

(
ϱ+

3p

c2

)
+
[
1
3Λa

]
. (16)

Einstein’s model is static and so ä = 0 and the model is a ‘dust model’ in which the
pressure is taken to be zero. Therefore,

4πG

3
aϱ = 1

3Λa or Λ = 4πGϱ . (17)

Einstein’s perspective was that this formula shows that there would be no solutions of
his field equations unless the cosmological constant was finite. If Λ were zero, the
Universe would be empty.

11



The Cosmological Constant Λ

Let us consider the first of the field equations with finite Λ.

ä = −
4πG

3
a

(
ϱ+

3p

c2

)
+ 1

3Λa . (18)

Inspection of (18) gives insight into the physical meaning of the cosmological constant.
Even in an empty universe, with ϱ = 0, p = 0, there is a net force acting on a test
particle. If Λ is positive, the term may be thought of as the ‘repulsive force of a vacuum’,
the repulsion being relative to an absolute geometrical frame of reference. There is no
obvious interpretation of this term in term of classical physics. There is, however, a
natural interpretation in the context of quantum field theory.

A key development has been the introduction of Higgs fields into the theory of weak
interactions. These were introduced in order to eliminate singularities in the theory and
to endow the W± and Z0 bosons with masses. Precise measurement of the masses of
these particles at CERN has confirmed the theory very precisely and the recent
announcement of the discovery of the Higgs boson was a real triumph. The Higgs fields
are scalar fields, unlike the vector fields of electromagnetism or the tensor fields of
General Relativity. They have negative pressure equations of state p = −ϱc2.
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The Cosmological Constant Λ

In the modern picture of the vacuum, there are zero-point fluctuations associated with
the zero point energies of all quantum fields. The stress–energy tensor of a vacuum
has a negative pressure equation of state, p = −ϱc2. This pressure may be thought of
as a ‘tension’ rather than a pressure. When such a vacuum expands, the work done
pdV in expanding from V to V +dV is just −ϱc2 dV so that, during the expansion,
the mass-energy density of the negative pressure field remains constant.

We can find the same result from (9).

dϱ

da
+3

(
ϱ+

p

c2

)
a

= 0 .

It can be seen that, if the vacuum energy density is to remain constant, it follows that
p = −ϱc2.

We can now relate ϱv to the value of Λ. We can now set Λ = 0 and instead include the
energy and pressure of the vacuum fields into equation (18).
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The Cosmological Constant Λ

ä = −
4πGa

3

(
ϱm + ϱv +

3pv
c2

)
, (19)

where, in place of the Λ-term, we have included the density of ordinary mass ϱm and
the mass density ϱv and pressure pv of the vacuum fields. Since pv = −ϱvc2, it follows
that

ä = −
4πGa

3
(ϱm − 2ϱv) . (20)

As the Universe expands, ϱm = ϱ0/a
3 and ϱv = constant. Therefore,

ä = −
4πGϱ0
3a2

+
8πGϱva

3
. (21)

Equation (21) has precisely the same dependence upon a as of the ‘cosmological term’
and so we can formally identify the cosmological constant with the vacuum mass
density.

Λ = 8πGϱv . (22)
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Density Parameters in the Matter and Vacuum Fields

Therefore, at the present epoch, a = 1, the first field equation becomes

ä(t0) = −
4πGϱ0

3
+

8πGϱv

3
. (23)

It is convenient to express densities in terms of the critical density ϱc which is defined
to be

ϱc = (3H2
0/8πG) = 1.88× 10−26 h2 kg m−3 . (24)

This is the density of the critical Einstein-de Sitter world model. Then, the actual density
of the model ϱ0 at the present epoch can be referred to this value through a density
parameter Ω0 = ϱ0/ϱc.

Ω0 =
8πGϱ0

3H2
0

. (25)

The subscript 0 has been attached to Ω because the critical density ϱc changes with
cosmic epoch, as does Ω. It is convenient to refer any cosmic density to ϱc. For
example, we will often refer to the density parameter of baryons, ΩB, or of visible
matter, Ωvis, or of dark matter, Ωdark, and so on – these are convenient ways of
describing the relative importance of different contributions to Ω0.
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Density Parameter in the Matter

The dynamical equations (4) and (5) with Λ = 0 therefore become

ä = −
Ω0H

2
0

2a2
; (26)

ȧ2 =
Ω0H

2
0

a
−

c2

ℜ2
. (27)

Several important results can be deduced from these equations. If we set the quantities
in (27) equal to their values at the present epoch, t = t0, a = 1 and ȧ = H0, we find

ℜ =
c/H0

(Ω0 − 1)1/2
and κ =

(Ω0 − 1)

(c/H0)2
. (28)

This last result shows that there is a one-to-one relation between the density of the
Universe and its spatial curvature, ℜ, one of the most beautiful results of the Friedman
world models with Λ = 0.
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The Dynamics of the Models with Λ = 0

To understand the solutions of (27), we substitute (28) into (27) to find the following
expression for ȧ

ȧ2 = H2
0

[
Ω0

(
1

a
− 1

)
+1

]
. (29)

In the limit of large values of a, ȧ2 tends to ȧ2 = H2
0(1−Ω0) .

• The models having Ω0 < 1 have open, hyperbolic geometries and expand to
a = ∞. They continue to expand with a finite velocity at a = ∞ with
ȧ = H0(1−Ω0)

1/2;

• The models with Ω0 > 1 have closed, spherical geometry and stop expanding at
some finite value of a = amax – they have ‘imaginary expansion rates’ at infinity.
They reach the maximum value of the scale factor after a time

tmax =
πΩ0

2H0(Ω0 − 1)3/2
. (30)

These models collapse to an infinite density after a finite time t = 2 tmax, an event
sometimes referred to as the ‘big crunch’;
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The Dynamics of the Models with Λ = 0

• The model with Ω0 = 1 separates
the open from the closed models
and the collapsing models from
those which expand forever. This
model is often referred to as the
Einstein–de Sitter or the critical
model. The velocity of expansion
tends to zero as a tends to infinity. It
has a particularly simple variation of
a(t) with cosmic epoch,

a =

(
t

t0

)2/3
κ = 0, (31)

where the present age of the world
model is t0 = (2/3)H−1

0 .
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Density Parameter in the Vacuum Fields

A density parameter associated with ϱv can now be introduced, in exactly the same
way as the density parameter Ω0 was defined.

ΩΛ =
8πGϱv

3H2
0

and so Λ = 3H2
0ΩΛ . (32)

The dynamical equations (4) and (5) can now be written

ä = −
Ω0H

2
0

2a2
+ΩΛH

2
0a ; (33)

ȧ2 =
Ω0H

2
0

a
−

c2

ℜ2
+ΩΛH

2
0a

2 . (34)

A traditional way of rewriting these relations is in terms of a deceleration parameter q0
defined by q0 = −ä/ȧ2 at the present epoch. Then, in terms of Ω0 and ΩΛ, we find
from (33),

q0 =
Ω0

2
−ΩΛ . (35)
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Density Parameters in Matter and Vacuum Fields

We can now substitute the values of a and ȧ at the present epoch, a = 1 and ȧ = H0,
into (34) to find the relation between the curvature of space, Ω0 and ΩΛ.

c2

ℜ2
= H2

0[(Ω0 +ΩΛ)− 1] , (36)

or

κ =
1

ℜ2
=

[(Ω0 +ΩΛ)− 1]

(c2/H2
0)

. (37)

A common practice is to introduce a density parameter associated with the curvature of
space at the present epoch ΩK such that

ΩK = −
c2

H2
0ℜ2

(38)

Then, equation (37) becomes

Ω0 +ΩΛ +ΩK = 1 . (39)
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Density Parameters in Matter and Vacuum Fields

Thus, the condition that the spatial sections are flat Euclidean space becomes

(Ω0 +ΩΛ) = 1 . (40)

The radius of curvature Rc of the spatial sections of these models change with scale
factor as Rc = aℜ and so, if the space curvature is zero now, it must have been zero at
all times in the past. This is one of the great attractions of the simplest inflationary
picture of the early Universe.
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The Dynamics of World Models with Λ ̸= 0

The dynamics of world models with Λ ̸= 0 are of special importance in the light of the
most recent estimates of the values of cosmological parameters. First of all, we discuss
some general considerations of the dynamics of these models and then look in more
detail at the range of models which are likely to be relevant for our future studies.

Models with Λ < 0 are not of a great deal of interest because the net effect is to
incorporate an attractive force in addition to gravity which slows down the expansion of
the Universe. The one difference from the models with Λ = 0 is that, no matter how
small the values of ΩΛ and Ω0 are, the universal expansion is eventually reversed, as
may be seen by inspection of (21) if ρv is taken to be negative.
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The Dynamics of World Models with Λ ̸= 0

Models with Λ > 0, ΩΛ > 0 result in a repulsive
force which opposes the attractive force of
gravity. There is a minimum rate of expansion
ȧmin at scale factor and minimum rate of
expansion:

amin = (Ω0/2ΩΛ)
1/3 , (41)

ȧ2min =
3H2

0

2
(2ΩΛΩ

2
0)

1/3 −
c2

ℜ2
. (42)

If the right-hand side of (42) is greater than zero,
the dynamical behaviour shown in the diagram
is found. For large values of a, the dynamics
become those of the de Sitter universe

a(t) ∝ exp

[(
Λ

3

)1/2
t

]
= exp

(
Ω

1/2
Λ H0t

)
.

(43)
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The Dynamics of World Models with Λ ̸= 0

If the right-hand side of (42) is less than zero,
there exists a range of scale factors for which no
solution exists and it can be shown readily that
the function a(t) has two branches. For the
branch B, the Universe never expanded to
sufficiently large values of a that the repulsive
effect of the Λ term can prevent the Universe
collapsing. In the case of branch A, the
dynamics are dominated by the Λ term – the
repulsive force is so strong that the Universe
never contracted to such a scale that the
attractive force of gravity could overcome its
influence. In the latter model, there was no initial
singularity – the Universe ‘bounced’ under the
influence of the Λ-term.
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The Dynamics of World Models with Λ ̸= 0

The most interesting cases are those for which
ȧmin ≈ 0. The case ȧmin = 0 is known as the
Eddington–Lemaı̂tre model. A, the Universe
expanded from an origin at some finite time in
the past and will eventually attain a stationary
state in the infinite future; B, the Universe is
expanding away from a stationary solution in the
infinite past. The stationary state C is unstable
because, if it is perturbed, the Universe moves
either onto branch B, or onto the collapsing
variant of branch A. In Einstein’s static Universe,
the stationary phase occurs at the present day.
From (42), the value of Λ corresponding to
ȧmin = 0 is

Λ = 3
2Ω0H

2
0(1+zc)

3 or ΩΛ =
Ω0

2
(1+zc)

3 ,

(44)
where zc is the redshift of the stationary state.
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The Dynamics of World Models with Λ ̸= 0

The static Eddington–Lemaı̂tre models have ȧ = 0 for all time and we can find a
one-to-one relation between the mean density of matter in the Universe Ω0 and the
redshift of the stationary phase zc.

Ω0 =
2

(1+ zc)3 − 3(1 + zc) + 2
=

2

z2c(zc +3)
. (45)

This calculation is largely of academic interest
nowadays. If a stationary, or near-stationary,
state had occurred, the fact that galaxies and
quasars are now observed with redshifts z > 6

suggests that zc > 6 and so Ω0 ≤ 0.01, which
is at least an order of magnitude less than the
total mass density in dark matter at the present
epoch.
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Classification of World Models with Λ ̸= 0

The properties of the world models with non-zero cosmological constant are
conveniently summarised in a plot of Ω0 against Ω0 +ΩΛ presented by Carroll, Press
and Turner.
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The Dynamics of World Models with Ω0 +ΩΛ = 1

The dynamics of spatially flat world models, Ω0 +ΩΛ = 1, with different combinations
of Ω0 and ΩΛ. The abscissa is plotted in units of H−1

0 .

28



Estimating the Value of ΩΛ

In their review of the problem of the cosmological constant, Carroll, Press and Turner
described how a theoretical value of ΩΛ could be estimated using simple concepts
from quantum field theory. They found the mass density of the repulsive field to be
ϱv = 1095 kg m−3, about 10120 times greater than permissable values at the present
epoch which correspond to ρv ≤ 10−27 kg m−3.

Heisenberg’s Uncertainty Principle states that a virtual pair of particles of mass m can
exist for a time t ∼ h̄/mc2, corresponding to a maximum separation x ∼ h̄/mc.
Hence, the typical density of the vacuum fields is ρ ∼ m/x3 ≈ c3m4/h̄3.

The mass density in the vacuum fields is unchanging with cosmic epoch and so,
adopting the Planck mass for mPl = (hc/G)1/2 = 5.4× 18−8 = 3× 1019 GeV, the
mass density corresponds to about 1097 kg m−3. This is quite a problem. If the
inflationary picture of the very early Universe is taken seriously, this is exactly the type
of force which drove the inflationary expansion. Then, we have to explain why ρv

decreased by a factor of about 10120 at the end of the inflationary era. In this context,
10−120 looks remarkably close to zero.
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Radiation Dominated Universes

As discussed in the first lecture, the energy density per unit frequency range of
black-body radiation is given by the Planck distribution

ε(ν) dν =
8πhν3

c3
1

ehν/kT − 1
dν . (46)

The radiation temperature Tr varies with redshift as Tr = T0(1 + z) and the spectrum
changes as

ε(ν1) dν1 =
8πhν31

c3
[(ehν1/kT1 − 1)]−1 dν1

=
8πhν30

c3
[ehν0/kT0 − 1)−1](1 + z)4 dν0

= (1+ z)4 ε(ν0) dν0 . (47)

Thus, a black-body spectrum preserves its form as the Universe expands but the
radiation temperature changes as Tr = T0(1 + z) and the frequency of each photon
as ν = ν0(1 + z). This is the same as the adiabatic expansion of a gas of photons.
The ratio of specific heats γ for radiation and a relativistic gas in the ultrarelativistic limit
is γ = 4/3 and so, in an adiabatic expansion, T ∝ V −(γ−1) = V −1/3 ∝ a−1, which
is exactly the same as the above result.
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Radiation Dominated Universes

The variations of p and ϱ with a can now be substituted into Einstein’s field equations:

ä = −
4πGa

3

(
ϱ+

3p

c2

)
+
[
1
3Λa

]
;

ȧ2 =
8πGϱ

3
a2 −

c2

ℜ2
+
[
1
3Λa

2
]
.

Therefore, setting the cosmological constant Λ = 0, we find

ä =
8πGε0
3c2

1

a3
ȧ2 =

8πGε0
3c2

1

a2
−

c2

ℜ2
. (48)

At early epochs we can neglect the constant term c2/ℜ2 and integrating

a =
(
32πGε0

3c2

)1/4
t1/2 or ε = ε0a

−4 =

(
3c2

32πG

)
t−2 . (49)

The dynamics of the radiation-dominated models, a ∝ t1/2, depend only upon the total
inertial mass density in relativistic and massless forms. Thus, to determine the
dynamics of the early Universe, we have to include all the massless and relativistic
components in the total energy density. The force of gravity acting upon the sum of
these determines the rate of deceleration of the early Universe.

31



The Cosmic Time–Redshift Relation

An important result for many aspects of astrophysical cosmology is the relation
between cosmic time t and redshift z. Combining (34) and (36), we find

ȧ = H0

[
Ω0

(
1

a
− 1

)
+ΩΛ(a

2 − 1) + 1
]1/2

. (50)

Because a = (1+ z)−1,

dz

dt
= −H0(1 + z)

[
(1 + z)2(Ω0z +1)−ΩΛz(z +2)

]1/2
. (51)

The cosmic time t measured from the Big Bang follows immediately by integration from
z = ∞ to z,

t =
∫ t

0
dt = −

1

H0

∫ z

∞

dz

(1 + z)[(1 + z)2(Ω0z +1)−ΩΛz(z +2)]1/2
. (52)
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Models with ΩΛ = 0

• For Ω0 > 1, we can write x = (Ω0 − 1)a/Ω0 = (Ω0 − 1)/Ω0(1 + z), and then

t(z) =
Ω0

H0(Ω0 − 1)3/2

[
sin−1 x1/2 − x1/2(1− x)1/2

]
. (53)

• For Ω0 < 1, we write y = (1−Ω0)a/Ω0 = (1−Ω0)/Ω0(1 + z), and then

t(z) =
Ω0

H0(1−Ω0)3/2

[
y1/2(1 + y)1/2 + sinh−1y1/2

]
. (54)

• For large redshifts, z ≫ 1, Ω0z ≫ 1, (53) and (54) reduce to

t(z) =
2

3H0Ω
1/2
0

z−3/2 . (55)

• The present age of the Universe for the different world models is found by
integrating from z = 0 to z = ∞. For the critical model Ω0 = 1, t0 = (2/3)H−1

0 ,
for the empty model, Ω0 = 0, t0 = H−1

0 and for Ω0 = 2, t0 = 0.571H−1
0 .
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Models with ΩΛ ̸= 0

The time-redshift relation for any of the models with finite ΩΛ can be found by
integration of (52). For models with zero curvature, there is a simple analytic solution
for the cosmic time-redshift relation. From (36), the condition that the curvature of
space is zero, ℜ → ∞, is Ω0 +ΩΛ = 1. Then, from (52),

t =
∫ t

0
dt = −

1

H0

∫ z

∞

dz

(1 + z)[Ω0(1 + z)3 +ΩΛ]
1/2

. (56)

The cosmic time–redshift relation becomes

t =
2

3H0Ω
1/2
Λ

ln
(
1+ cos θ

sin θ

)
where tan θ =

(
Ω0

ΩΛ

)1/2
(1 + z)3/2 . (57)

The present age of the Universe follows by setting z = 0

t0 =
2

3H0Ω
1/2
Λ

ln

 1+Ω
1/2
Λ

(1−ΩΛ)
1/2

 . (58)

For example, if ΩΛ = 0.9 and Ω0 = 0.1, the age of the world model would be
1.28H−1

0 . For the popular world model with Ω0 = 0.3 and ΩΛ = 0.7, the age of the
Universe is 0.964H−1

0 , remarkably close to H−1
0 .
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Distance Measures as a Function of Redshift

We can now complete our programme of finding expressions for the comoving radial
distance coordinate r and the distance measure D. We recall that the increment of
comoving radial distance coordinate distance is

dr = −
cdt

a(t)
= −cdt(1 + z) . (59)

From (51),

dr = −
cdt

a
=

c

H0

dz

[(1 + z)2(Ω0z +1)−ΩΛz(z +2)]1/2
. (60)

and so, integrating from redshift 0 to z, we find the expression for r:

r =
c

H0

∫ z

0

dz

[(1 + z)2(Ω0z +1)−ΩΛz(z +2)]1/2
. (61)

Then, we can find the distance measure D by evaluating D = ℜ sin(r/ℜ), where ℜ is
given by (36).
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Models with ΩΛ = 0

Integrating (61) with ΩΛ = 0 and Ω0 > 1, we find

r =
c

H0

∫ z

0

dz

(1 + z)(Ω0z +1)1/2
(62)

=
2c

H0(Ω0 − 1)1/2

tan−1
(
Ω0z +1

Ω0 − 1

)1/2
− tan−1(Ω0 − 1)−1/2

 . (63)

If Ω0 < 1, the inverse tangents are replaced by inverse hyperbolic tangents. After
some further straightforward algebra, we find that

D =
2c

H0Ω
2
0(1 + z)

{
Ω0z + (Ω0 − 2)[(Ω0z +1)1/2 − 1]

}
. (64)

This is the famous formula first derived by Mattig. Although the integral has been found
for the case of spherical geometry, it turns out that the formula is correct for all values of
Ω0. In the limit of the empty, or Milne, world model, Ω0 = 0, (64) becomes

D =
cz

H0

(
1+

z

2

)
(1 + z)

. (65)
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Space-time Diagrams for the Standard World Models

Let us summarise the various times and distances used in cosmological analyses.

Comoving radial distance coordinate In terms of cosmic time and scale factor, the
comoving radial distance coordinate r is defined to be

r =
∫ t0

t

cdt

a
=
∫ 1

a

cda

aȧ
. (66)

Proper radial distance coordinate We run up against the same problems we
encountered in defining the comoving radial distance coordinate, in that it only makes
sense to define distances at a particular cosmic epoch t. Therefore, we define the
proper radial distance rprop to be the comoving radial distance coordinate projected
back to the epoch t, that is

rprop = a
∫ t0

t

cdt

a
= a

∫ 1

a

cda

aȧ
. (67)
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Space-time Diagrams for the Standard World Models

Particle horizon The particle horizon rH is defined as the maximum proper distance
over which there can be causal communication at the epoch t

rH = a
∫ t

0

cdt

a
= a

∫ a

0

cda

aȧ
. (68)

Event horizon The event horizon rE is defined as the greatest proper radial distance an
object can have if it is ever to be observable by an observer who observes the Universe
at cosmic time t1.

rE = a
∫ tmax

t1

cdt

a(t)
= a

∫ amax

a1

cda

aȧ
. (69)
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Space-time Diagrams for the Standard World Models

Cosmic time Cosmic time t is defined to be time measured by a fundamental observer
who reads time on a standard clock.

t =
∫ t

0
dt =

∫ a

0

da

ȧ
. (70)

Conformal time The conformal time τ is similar to the definition of comoving radial
distance coordinate. Time intervals are projected forward to present epoch

dtconf = dτ =
dt

a
. (71)

At any epoch, the conformal time has value

τ =
∫ t

0

dt

a
=
∫ a

0

da

aȧ
. (72)

It follows that, in a space-time diagram in which comoving radial distance coordinate is
plotted against conformal time, the particle horizon is a straight line with slope equal to
the speed of light.
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The Past Light Cone

This topic requires a little care. First, because of the assumptions of isotropy and
homogeneity, Hubble’s linear relation v = H0r applies at the present epoch to
recessions speeds which exceed the speed of light, where r is the radial comoving
distance coordinate. Recall how we defined r. The fundamental observers measured
increments of distance ∆r at the present epoch t0. If we consider fundamental
observers who are far enough apart, this speed can exceed the speed of light. There is
nothing in this argument which contradicts the special theory of relativity – it is a
geometric result because of the requirements of isotropy and homogeneity.

Consider the analogue for the expanding Universe of the surface of an expanding
spherical balloon. As the balloon inflates, a linear velocity-distance relation is found on
the surface of the sphere, not only about any point on the sphere, but also at arbitrarily
large distances on its surface. At very large distances, the speed of separation can be
greater than the speed of light, but there is no causal connection between these points
– they are simply partaking in the uniform expansion of the underlying space-time
geometry of the Universe.
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The Past Light Cone

Consider the proper distance between two fundamental observers at some epoch t

rprop = a(t)r , (73)

where r is comoving radial distance. Differentiating with respect to cosmic time,

drprop
dt

= ȧr + a
dr

dt
. (74)

The first term on the right-hand side represents the motion of the substratum and, at
the present epoch, becomes H0r. Consider, for example, the case of a very distant
object in the critical world model, Ω0 = 1,ΩΛ = 0. As a tends to zero, the comoving
radial distance coordinates tends to r = 2c/H0. Therefore, the local rest frame of
objects at these large distances moves at twice the speed of light relative to our local
frame of reference at the present epoch. At the epoch at which the light signal was
emitted along our past light cone, the recessional velocity of the local rest frame
vrec = ȧr was greater than this value, because ȧ ∝ a−1/2.
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The Past Light Cone

The second term on the right-hand side of (74) corresponds to the velocity of peculiar
motions in the local rest frame at r, since it corresponds to changes of the comoving
radial distance coordinate. The element of proper radial distance is adr and so, if we
consider a light wave travelling along our past light cone towards the observer at the
origin, we find

vtot = ȧr − c . (75)

This is the key result which defines the propagation of light from the source to the
observer in space-time diagrams for the expanding Universe.

We can now plot the trajectories of light rays from their source to the observer at t0.
The proper distance from the observer at r = 0 to the past light cone rPLC is

rPLC =
∫ t

0
vtot dt =

∫ a

0

vtot da

ȧ
. (76)
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The Past Light Cone

Notice that, initially the light rays from distant objects are propagating away from the
observer – this is because the local isotropic cosmological rest frame is moving away
from the observer at r = 0 at a speed greater than that of light. The light waves are
propagated to the observer at the present epoch through local inertial frames which
expand with progressively smaller velocities until they cross the Hubble sphere at which
the recession velocity of the local frame of reference is the speed of light. The definition
of the radius of the Hubble sphere rHS at epoch t is thus given by

c = H(t) rHS =
ȧ

a
rHS or rHS =

ac

ȧ
. (77)

Note that rHS is a proper radial distance. From this epoch onwards, propagation is
towards the observer until, as t → t0, the speed of propagation towards the observer is
the speed of light.

It is simplest to illustrate how the various scales change with time in specific examples
of standard cosmological models. We consider first the critical world model and then
our reference Λ model.
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Space-Time Diagram
Cosmic Time vs. Proper Distance

The times and distances are measured in units of H−1
0 and c/H0 respectively.
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Space-Time Diagram
Cosmic Time vs. Comoving Distance Coordinate

The times and distances are measured in units of H−1
0 and c/H0 respectively.
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Space-Time Diagram
Conformal Time vs. Comoving Distance Coordinate

The times and distances are measured in units of H−1
0 and c/H0 respectively.
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Space-Time Diagram
Cosmic Time vs. Proper Distance

Ω0 = 0.3. The times and distances are measured in units of H−1
0 and c/H0

respectively.
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Space-Time Diagram
Cosmic Time vs. Comoving Distance Coordinate

Ω0 = 0.3. The times and distances are measured in units of H−1
0 and c/H0

respectively.
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Space-Time Diagram
Conformal Time vs. Comoving Distance Coordinate

Ω0 = 0.3. The times and distances are measured in units of H−1
0 and c/H0

respectively.
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The Horizon Problem
‘Why is the Universe so isotropic?’ At earlier
cosmological epochs, the particle horizon r ∼ ct

encompassed less and less mass and so the
scale over which particles could be causally
connected became smaller and smaller. On the
last scattering surface at z ≈ 1,500, the
particle horizon corresponds to an angle θ ≈ 2◦

on the sky. How did opposite sides of the sky
know they had to have the same properties
within one part in 105?
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The Horizon Problem

In this version of the conformal diagram, we have included the epoch of recombination
and the past light cone from that epoch back to the initial singularity.

The times and distances are measured in units of H−1
0 and c/H0 respectively.
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The Inflationary Picture

The inflationary picture solves the horizon and flatness problems by assuming there
was a period of exponential growth of the scale factor in the very early Universe.

In the extended conformal time diagram, the time coordinate is set to zero at the end of
the inflationary era at, say, 10−32 s and evolution of the Hubble sphere and the past
light cone at recombination extrapolated back to the inflationary era.
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The Inflationary Picture

• The particle horizon is the maximum distance over which causal contact could
have been made from the time of the singularity to a given epoch. The radius of the
Hubble sphere is the distance of causal contact at a particular epoch, c = Hr.

• The point at which the Hubble sphere crosses the comoving radial distance
coordinate of the last scattering surface, exactly corresponds to the time when the
past light cones from opposite directions on the sky touch at conformal time −3.
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The Inflationary Picture

Because any object preserves its comoving radial distance coordinate for all time, in the
early Universe, objects lie within the Hubble sphere, but during the inflationary
expansion, they pass through it and remain outside it for the rest of the inflationary
expansion. Only when the Universe transforms back into the standard Friedman model
does the Hubble sphere begin to expand again and objects can then ‘re-enter the
horizon’. This behaviour occurs for all scales and masses of interest in understanding
the origin of structure in the present Universe.

Since causal connection is no longer possible on scales greater than the Hubble
sphere, objects ‘freeze out’ when they pass through the Hubble sphere during the
inflationary era, but they come back in again and regain causal contact when they
recross the Hubble sphere.

The inflationary expansion also drives the geometry to a flat geometry since its radius
of curvature ℜ → ∞, solving the fine-tuning problem.
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