
Fundamentals of Cosmology
(1) Basic Physics of Cosmological Models

• Basic observations

• Isotropic curve spaces

• Robertson-Walker metric

• Observations in cosmology

• Radiation-dominated Universes
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The Book of the Lectures

The second edition of Galaxy Formation was
published by Springer Verlag in 2008. Many
more details of the observations and
calculations can be found there.

The emphasis is upon the basic physics
involved in astrophysical cosmology, trying to
keep it as simple, but rigorous, as possible.

In the four lectures, I will also summarise
some of the results of the recent explosion of
information on observational cosmology and
their interpretation.
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How It Came About

If you are interested in understanding the
history of the development of cosmology, you
may find my book, The Cosmic Century
(2006) useful. It covers the history of
cosmology up to 2005.

Part of the value of this approach is that it
gives some understanding of the problems
which faced the pioneers of cosmology and
the numerous wrong turns which were taken.
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The Basic Structure of Cosmological Models

First, we examine the fundamentals of the cosmological models used in modern
cosmology. The models turn out to be remarkably successful, but we need to ask how
secure these foundations are. We need to examine:

• Basic observations on which the models are based.

• Basic assumptions made in the construction of cosmological models.

• Observations in Cosmology - how the models really work.

When we come to study specific examples of the models, I will assume the answer for
illustrative purposes: Ω0 = 0.3, ΩΛ = 0.7, h = 0.7. We will add in other
cosmological parameters later.
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COBE Observations of the Cosmic
Microwave Background Radiation (1990s)

Whole sky in Hammer-Aitoff projection

The starting points for cosmological studies are
the observations of the Cosmic Microwave
Background Radiation by the COBE satellite.

• The spectrum is very precisely that of a
perfect black-body at T = 2.726 K.

• A perfect dipole component is detected,
corresponding to the motion of the Earth
through the frame in which the radiation
would be perfectly isotropic.

• Away from the Galactic plane, the radiation
is isotropic to better than one part in 105.
Significant temperature fluctuations
∆T/T ≈ 10−5 were detected on scales
θ ≥ 10◦.
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WMAP Observations of the Cosmic
Microwave Background Radiation (2003)

Cosmic Background Explorer
(COBE): θ = 7◦.

The same features are present
in the WMAP image of the sky.
The WMAP experiment had
much higher angular resolution
than COBE.

Wilkinson Microwave Anisotropy
Probe (WMAP) θ = 0.3◦.

Galactic foreground emission
has been subtracted.

The radiation originated on the last scattering surface at a redshift z ∼ 1000, or scale
factor a ∼ 10−3.
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The Homogeneity of the Universe

The COBE and WMAP
observations have established
the isotropy of the Universe, but
we also need to know about its
homogeneity. This has been
established by large surveys of
galaxies, starting with the local
distribution determined by
Geller and Huchra (top) and
proceeding to the largest scales
accessible at the present epoch
by the 2dF (bottom) and SDSS
surveys which each contain
over 200,000 galaxies.
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The Homogeneity of the Universe

The Sloan Digital Sky Survey

The large scale distribution of
galaxies is irregular with giant walls
and holes on scales much greater
than those of clusters of galaxies.

The distributions display, however,
the same degree of inhomogeneity
as we observe to larger distances in
the Universe. This is quantified by
the two-point correlation functions for
galaxies to different distances,

n(r) = n0[1 + ξ(r)] . (1)

Note: we are no longer observing the distant Universe through a non-distorting screen.
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Hubble’s Law
The second result we need is
the redshift-distance relation for
galaxies – often called the
Hubble diagram.

A modern version of Hubble’s
law for the brightest galaxies in
rich clusters of galaxies,
v = H0r.

All classes of galaxy follow the
same Hubble’s law. H0 is
Hubble’s constant.

This means that the Universe as
a whole is expanding uniformly.
Run simulation.
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Ingredients of the Standard Cosmological Models

The standard models contain three essential ingredients:

• The cosmological principle – we are at a typical location in the Universe. Combined
with the observations that the Universe is isotropic, homogeneous and uniformly
expanding, this leads to the Robertson–Walker metric, requiring only special
relativity + postulates of isotropy and homogeneity;

• Weyl’s postulate– the world lines of particles meet at a singular point in the finite or
infinite past. This solves the clock synchronisation problem and means that there is
a unique world line passing through every point in space-time. The fluid moves
along streamlines in the universal expansion and behaves like a perfect fluid with
energy–momentum tensor is given by the Tαβ;

• Einstein appreciated that, in General Relativity, he had a theory which enabled fully
self-consistent models for the Universe as a whole to be constructed.

Let us build up the standard equations by physical arguments.
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Isotropic Curved Spaces

A lift accelerated upwards.

Einstein’s great insight in developing General
Relativity was that space-time could not be flat if
the Principle of Equivalence was to hold good.

In the time the light ray propagates across the
lift, a distance l, the lift moves upwards a
distance 1

2|g|t
2. Therefore, in the frame of

reference of the accelerated lift, and also in the
stationary frame in the gravitational field, the
light ray follows a parabolic path. Approximating
the light path by a circular arc of radius R, it is
straightforward to show that

R =
2l2

|g|t2
=

2c2

|g|
. (2)

The radius of curvature of the path of the light
ray depends only upon the local gravitational
acceleration |g|.
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Isotropic Curved Spaces

Consider first the simplest two-dimensional
curved geometry, the surface of a sphere. The
three sides of this triangle are all segments of
great circles on the sphere and so are the
shortest distances between the three corners of
the triangle. The three lines are geodesics in the
curved geometry.

We need a procedure for working out how
non-Euclidean the curved geometry is. The way
this is done in general is by the procedure known
as the parallel displacement or parallel transport
of a vector on making a complete circuit around
a closed figure such as the triangle. The total
rotation of the vector is 270◦. Clearly, the
surface of the sphere is a non-Euclidean space.
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Isotropic Curved Spaces

This procedure illustrates how we can work out the
geometrical properties of any two-space, entirely by
making measurements within the two-space.
Suppose the angle at A was not 90◦ but some
arbitrary angle θ. Then, if the radius of the sphere is
Rc, the surface area of the triangle ABC is
A = θR2

c . Thus, if θ = 90◦, the area is πR2
c/2 and

the sum of the angles of the triangle is 270◦; if
θ = 0◦, the area is zero and the sum of the angles
of the triangle is 180◦. The difference of the sum of
the angles of the triangle from 180◦ is proportional
to the area of the triangle, that is

(Sum of angles of triangle−180◦) ∝ (Area of triangle) .

13



Isotropic Curved Spaces

We now work out the sum of the angles round a closed figure in an isotropic curved
space. The procedure is shown schematically in the diagram which shows two
geodesics from the origin at O being crossed by another pair of geodesics at distances
r and r +∆x from the origin. The angle dθ between the geodesics at O is assumed to
be small. In Euclidean space, the length of the segment of the geodesic AB would be
ξ = r dθ. However, this is no longer true in non-Euclidean space and instead, we write

ξ(r) = f(r) dθ . (3)

We now to work out the angle between the diverging geodesics at distance r from the
origin.
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Isotropic Curved Spaces

It can be seen that the angle between the geodesics is

β =
ξ(r +dr)− ξ(r)

dr
=

dξ(r)

dr
= dθ

df(r)

dr
. (4)

Now move a distance ∆x further along the geodesics. The change in the angle β, ∆β

is

∆β =
dξ(r +∆x)

dr
−

dξ(r)

dr
=

d2ξ(r)

dr2
∆x =

d2f(r)

dr2
∆xdθ . (5)
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Isotropic Curved Spaces

In Euclidean space, ξ(r) = f(r) dθ = r dθ, f(r) = r and hence (5) becomes
β = dθ. Furthermore, in Euclidean space, d2f(r)/dr2 = 0 and so ∆β = 0, β = dθ

remains true for all values of r.

Now, the rotation of the vector dβ depends upon the area of the quadrilateral ABCD. In
the case of an isotropic space, we should obtain the same rotation wherever we place
the loop in the two-space. Furthermore, if we were to split the loop up into a number of
sub-loops, the rotations around the separate sub-loops must add up linearly to the total
rotation dβ. Thus, in an isotropic two-space, the rotation dβ should be proportional to
the area of the loop ABCD and must be a constant everywhere in the two-space, just as
we found in the particular case of a spherical surface.
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Isotropic Curved Spaces

The area of the loop is dA = ξ(r)∆x = f(r)∆xdθ, and so we can write

d2f(r)

dr2
= −κ f(r) , (6)

where κ is a constant, the minus sign being chosen for convenience. This is the
equation of simple harmonic motion which has solution

f(r) = A sinκ1/2r . (7)

We find the value of A from the expression for ξ(r) for small values of r, which must
reduce to the Euclidean expression dθ = ξ/r. Therefore, A = κ−1/2 and

f(r) =
sinκ1/2r

κ1/2
. (8)

κ is the curvature of the two-space and can be positive, negative or zero. If it is
negative, we can write κ = −κ′, where κ′ is positive and then the circular functions
become hyperbolic functions

f(r) =
sinhκ′1/2r

κ′1/2
. (9)
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Isotropic Curved Spaces

In the Euclidean case, d2f(r)/dr2 = 0 and so κ = 0 .

The results we have derived include all possible isotropic curved two-spaces. The
constant κ can be positive, negative or zero corresponding to spherical, hyperbolic and
flat spaces respectively. In geometric terms, Rc = κ−1/2 is the radius of curvature of a
two-dimensional section through the isotropic curved space and has the same value at
all points and in all orientations within the plane. It is often convenient to write the
expression for f(r) in the form

f(r) = Rc sin
r

Rc
, (10)

where Rc is real for closed spherical geometries, imaginary for open hyperbolic
geometries and infinite for the case of Euclidean geometry.
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Isotropic Curved Spaces

The simplest examples of such spaces are the
spherical geometries in which Rc is just the radius
of the sphere. The hyperbolic spaces are more
difficult to envisage. The fact that Rc is imaginary
can be interpreted in terms of the principal radii of
curvature of the surface having opposite sign. The
geometry of a hyperbolic two-sphere can be
represented by a saddle-shaped figure, just as a
two-sphere provides an visualisation of the
properties of a spherical two-space.
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The Space-time Metric for Isotropic Curved Spaces

In flat space, the distance between two
points separated by dx, dy, dz is

dl2 = dx2 +dy2 +dz2. (11)

Let us now consider the simplest
example of an isotropic two-dimensional
curved space, namely the surface of a
sphere. We can set up an orthogonal
frame of reference at each point locally
on the surface of the sphere. It is
convenient to work in spherical polar
coordinates to describe positions on the
surface of the sphere.
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The Space-time Metric for Isotropic Curved Spaces

In this case, the orthogonal coordinates
are the angular coordinates θ and ϕ,
and the expression for the increment of
distance dl between two neighbouring
points on the surface can be written

dl2 = R2
c dθ

2 +R2
c sin

2 θ dϕ2, (12)

where Rc is the radius of curvature of
the two-space, which in this case is just
the radius of the sphere.
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The Space-time Metric for Isotropic Curved Spaces

The expression (12) is known as the metric of the two-dimensional surface and can be
written more generally in tensor form

dl2 = gµν dx
µdxν. (13)

It is a fundamental result of differential geometry that the metric tensor gµν contains all
the information about the intrinsic geometry of the space. The problem is that we can
set up a variety of different coordinate systems to define the coordinates of a point on
any two dimensional surface. For example, in the case of a Euclidean plane, we could
use rectangular Cartesian coordinates so that

dl2 = dx2 +dy2, (14)

or we could use polar coordinates in which

dl2 = dr2 + r2dϕ2. (15)
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The Space-time Metric for Isotropic Curved Spaces

How do we determine the intrinsic curvature of the space in terms of the gµν of the
metric tensor? For the case of two-dimensional metric tensors which can be reduced to
diagonal form, the intrinsic curvature of the space is given by the quantity

κ =
1

2g11g22

−∂2g11

∂x22
−

∂2g22

∂x21
+

1

2g11

∂g11
∂x1

∂g22
∂x1

+

(
∂g11
∂x2

)2
+

1

2g22

∂g11
∂x2

∂g22
∂x2

+

(
∂g22
∂x1

)2 . (16)

We can use (16) to show that metrics (14) and (15) have zero curvature and that, for
the surface of a sphere, the metric (12) has positive curvature with κ = R−2

c at all
points on the sphere. κ is known as the Gaussian curvature of the two-space and is the
same as the definition of the curvature we have already introduced. In general curved
spaces, the curvature κ varies from point to point in the space.

The extension to isotropic three-spaces is straightforward if we remember that any
two-dimensional section through an isotropic three-space must be an isotropic
two-space and we already know the metric tensor for this case.
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The Space-time Metric for Isotropic Curved Spaces

The natural system of coordinates for
an isotropic two-space is a spherical
polar system in which a radial distance
ϱ round the sphere is measured from
the pole and the angle ϕ measures
angular displacements at the pole.

The distance ϱ round the arc of a great
circle from the point O to P is ϱ = θRc

and so the metric can be written

dl2 = dϱ2 +R2
c sin

2
(

ϱ

Rc

)
dϕ2 . (17)

The distance ϱ is the shortest distance
between O and P on the surface of the
sphere since it is part of a great circle and
is therefore the geodesic distance
between O and P in the isotropic curved
space. Geodesics play the role of straight
lines in curved space.
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The Space-time Metric for Isotropic Curved Spaces

We can write the metric in an alternative form if we introduce a distance measure

x = Rc sin
(

ϱ

Rc

)
. (18)

Differentiating and squaring, we find

dx2 =
[
1− sin2

(
ϱ

Rc

)]
dϱ2 dϱ2 =

dx2

1− κx2
, (19)

where κ = 1/R2
c is the curvature of the two space.

Therefore, we can rewrite the metric in the form

dl2 =
dx2

1− κx2
+ x2dϕ2 . (20)

From the metric (20) dl = xdϕ is a proper dimension perpendicular to the radial
coordinate ϱ and that it is the correct expression for the length of a line segment which
subtends the angle dϕ at geodesic distance ϱ from O. It is therefore what is known as
an angular diameter distance since it is guaranteed to give the correct answer for the
length of a line segment perpendicular to the line of sight.
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The Space-time Metric for Isotropic Curved Spaces

We can use either ϱ or x in our metric but, if we use x, the increment of geodesic
distance is dϱ = dx/(1− κx2)1/2. We recall that the curvature κ = 1/R2

c can be
positive as in the spherical two-space discussed above, zero in which case we recover
flat Euclidean space (Rc → ∞) and negative in which case the geometry becomes
hyperbolic rather than spherical.

We now write down the expression for the spatial increment in any isotropic,
three-dimensional curved space. Any two-dimensional section through an isotropic
three-space must be an isotropic two-space for which the metric is (17) or (20). In
spherical polar coordinates, the general angular displacement perpendicular to the
radial direction is

dΦ2 = dθ2 + sin2 θ dϕ2 . (21)

Note that the θs and ϕs in (21) are different from those used in the diagram. Thus, by
extension of the formalism we have derived already, the spatial increment can be written

dl2 = dϱ2 +R2
c sin

2
(

ϱ

Rc

)
[dθ2 + sin2 θ dϕ2] , (22)

in terms of the three-dimensional spherical polar coordinates (ϱ, θ, ϕ).
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The Space-time Metric for Isotropic Curved Spaces

An exactly equivalent form is obtained if we write the spatial increment in terms of
x, θ, ϕ in which case we find

dl2 =
dx2

1− κx2
+ x2[dθ2 + sin2 θ dϕ2] . (23)

We are now in a position to write down the Minkowski metric in any isotropic
three-space. It is given by

ds2 = dt2 −
1

c2
dl2 , (24)

where dl is given by either of the above forms of the spatial increment, (22) or (23).
Notice that we have to be careful about the meanings of the distance coordinates – x

and ϱ are equivalent but physically quite distinct distance measures. We can now
proceed to derive from this metric the Robertson–Walker metric.
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The Robertson–Walker Metric

In order to apply the metric (24) to isotropic, homogeneous world models, we need the
cosmological principle and the concepts of fundamental observers and cosmic time.

• For uniform, isotropic world models, we define a set of fundamental observers, who
move in such a way that the Universe always appears to be isotropic to them.

• Cosmic time is time measured on the clock of a fundamental observer.

There are no problems of synchronisation of the clocks carried by the fundamental
observers because, according to Weyl’s postulate, the geodesics of all observers meet
at one point in the past and cosmic time can be measured from that reference epoch.

From (22) and (24), the metric can be written in the form

ds2 = dt2 −
1

c2
[dϱ2 +R2

c sin
2(ϱ/Rc)(dθ

2 + sin2 θ dϕ2)] . (25)

t is cosmic time and dϱ is an increment of proper distance in the radial direction.
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The Robertson-Walker Metric
There is a problem in applying the metric
to the expanding Universe as is illustrated
by the space-time diagram. Since light
travels at a finite speed, we observe all
astronomical objects along a past light
cone which is centred on the Earth at the
present epoch t0. Therefore, when we
observe distant objects, we do not
observe them at the present epoch but
rather at an earlier epoch t1 when the
distances between fundamental
observers were smaller and the spatial
curvature different. The problem is that
we can only apply the metric (25) to an
isotropic curved space defined at a single
epoch.
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The Robertson-Walker Metric

To resolve this problem, we perform
the following thought experiment. To
measure a proper distance which can
be included in the metric (25),

we line up a set of fundamental observers
between the Earth and the galaxy whose
distance we wish to measure. The
observers are instructed to measure the
distance dϱ to the next fundamental
observer at a particular cosmic time t. By
adding together all the dϱs, we can find a
proper distance ϱ which is measured at a
single epoch and which can be used in
the metric (25). Notice that ϱ is a fictitious
distance since we do not know how to
project their positions to the present
epoch until we know the kinematics of the
expanding Universe. Thus, the distance
measure ϱ depends upon the choice of
cosmological model.
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The Comoving Distance Coordinate

The definition of a uniform expansion is that between two cosmic epochs, t1 and t2, the
distances of any two fundamental observers, i and j, change such that

ϱi(t1)

ϱj(t1)
=

ϱi(t2)

ϱj(t2)
= constant , (26)

that is,

ϱi(t1)

ϱi(t2)
=

ϱj(t1)

ϱj(t2)
= ... = constant =

a(t1)

a(t2)
. (27)

For isotropic world models, a(t) is a universal function known as the scale factor which
describes how the relative distances between any two fundamental observers change
with cosmic time t. We set a(t) equal to 1 at the present epoch t0 and let the value of ϱ
at the present epoch be r, that is, we can rewrite (27) as

ϱ(t) = a(t)r . (28)

r thus becomes a distance label which is attached to a galaxy or fundamental observer
for all time and the variation in proper distance in the expanding Universe is taken care
of by the scale factor a(t); r is called the comoving radial distance coordinate.
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The Comoving Distance Coordinate

Proper distances perpendicular to the line of sight must also change by a factor a
between the epochs t and t0.

∆l(t)

∆l(t0)
= a(t) . (29)

From the metric (25),

a(t) =
Rc(t) sin [ϱ/Rc(t)] dθ

Rc(t0) sin[r/Rc(t0)] dθ
. (30)

Reorganising this equation and using (28),

Rc(t)

a(t)
sin

[
a(t)r

Rc(t)

]
= Rc(t0) sin

[
r

Rc(t0)

]
. (31)

This is only true if

Rc(t) = a(t)Rc(t0) , (32)

that is, the radius of curvature of the spatial sections is proportional to the scale factor
a(t). Thus, in order to preserve isotropy and homogeneity, the curvature of space
changes as the Universe expands as κ = R−2

c ∝ a−2. κ cannot change sign and so, if
the geometry of the Universe was once, say, hyperbolic, it will always remain so.
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The Robertson-Walker Metric

Let us call the value of Rc(t0), that is, the radius of curvature of the spatial geometry at
the present epoch, ℜ. Then

Rc(t) = a(t)ℜ . (33)

Substituting (28) and (33) into the metric (25), we obtain

ds2 = dt2 −
a2(t)

c2
[dr2 + ℜ2 sin2(r/ℜ)(dθ2 + sin2 θ dϕ2)] . (34)

This is the Robertson–Walker metric in the form we will use in much of our future
analysis. Notice that it contains one unknown function a(t), the scale factor, which
describes the dynamics of the Universe and an unknown constant ℜ which describes
the spatial curvature of the Universe at the present epoch.

The metric can be written in different ways. For example, if we use a comoving angular
diameter distance r1 = ℜ sin(r/ℜ), the metric becomes

ds2 = dt2 −
a2(t)

c2

[
dr21

1− κr21
+ r21(dθ

2 + sin2 θ dϕ2)

]
, (35)

where κ = 1/ℜ2.
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The Robertson-Walker Metric

By a suitable rescaling of the r1 coordinate κr21 = r22, the metric can equally well be
written

ds2 = dt2 −
R2
1(t)

c2

[
dr22

1− kr22
+ r22(dθ

2 + sin2 θ dϕ2)

]
, (36)

with k = +1,0 and −1 for universes with spherical, flat and hyperbolic geometries
respectively. Notice that, in this rescaling, the value of R1(t) = Rc(t0)a = ℜa and so
the value of R1(t) at the present epoch is ℜ rather than unity. This is a popular form for
the metric, but I will normally use (34) because the r coordinate has an obvious and
important physical meaning.

The importance of the metrics (34), (35) and (36) is that they enable us to define the
invariant interval ds2 between events at any epoch or location in the expanding
Universe.
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The Robertson-Walker Metric

To summarise, the Robertson-Walker metric can be written in the following form:

ds2 = dt2 −
a2(t)

c2
[dr2 + ℜ2 sin2(r/ℜ)(dθ2 + sin2 θ dϕ2)] .

The metric contains one unknown function a(t), the scale factor, and the constant ℜ
which is the radius of curvature of the geometry of the Universe at the present epoch.

• t is cosmic time as measured by a clock carried by a fundamental observer;

• r is the comoving radial distance coordinate which is fixed to a galaxy for all time.

• a(t) dr is the element of proper (or geodesic) distance in the radial direction at the
epoch t;

• a(t)[ℜ sin(r/ℜ)] dθ is the element of proper distance perpendicular to the radial
direction subtended by the angle dθ at the origin;

• Similarly, a(t)[ℜ sin(r/ℜ)] sin θ dϕ is the element of proper distance in the
ϕ-direction.
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The Cosmological Redshift

By cosmological redshift, we mean the shift of spectral lines to longer wavelengths
associated with the isotropic expansion of the system of galaxies. If λe is the
wavelength of the line as emitted and λ0 the observed wavelength, the redshift z is
defined to be

z =
λ0 − λe

λe
. (37)

If the redshift z were interpreted as the recession velocity v of a galaxy, these would be
related by the Newtonian Doppler shift formula

v = cz . (38)

This is the type of velocity which Hubble used in deriving the velocity–distance relation,
v = H0r. It is however incorrect to use the special relativistic Doppler shift formula

1+ z =

(
1+ v/c

1− v/c

)1/2
, (39)

at large redshifts. Rather, because of the requirements of isotropy and homogeneity,
the relation v ∝ r applies at all distances, including those at which the recession
velocity would exceed the speed of light.
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The Real Meaning of Redshift

Consider a wave packet of frequency ν1 emitted between cosmic times t1 and
t1 +∆t1 from a distant galaxy. This wave packet is received by an observer at the
present epoch in the interval of cosmic time t0 to t0 +∆t0. The signal propagates
along null-cones, ds2 = 0, and so, considering radial propagation from source to
observer, dθ = 0 and dϕ = 0, the metric (34) gives us the relation

dt = −
a(t)

c
dr

cdt

a(t)
= −dr . (40)

a(t) dr is simply the interval of proper distance at cosmic time t. The minus sign
appears because the origin of the r coordinate is the observer at t = t0. Considering
first the leading edge of the wave packet, the integral of (40) is∫ t0

t1

cdt

a(t)
= −

∫ 0

r
dr . (41)

The end of the wave packet must travel the same distance in units of comoving
distance coordinate since the r coordinate is fixed to the galaxy for all time. Therefore,∫ t0+∆t0

t1+∆t1

cdt

a(t)
= −

∫ 0

r
dr , (42)
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The Meaning of Redshift
Therefore, ∫ t0

t1

cdt

a(t)
+

c∆t0
a(t0)

−
c∆t1
a(t1)

=
∫ t0

t1

cdt

a(t)
. (43)

Since a(t0) = 1, we find that

∆t0 = ∆t1/a(t1) . (44)

This is the cosmological expression for the phenomenon of time dilation. Distant
galaxies are observed at an earlier cosmic time t1 when a(t1) < 1 and so phenomena
are observed to take longer in our frame of reference than in that of the source.

Expression (44) also provides an expression for the redshift. If ∆t1 = ν−1
1 is the

period of the emitted waves and ∆t0 = ν−1
0 that of observed waves, ν0 = ν1a(t1). In

terms of redshift z,

z =
λ0 − λe

λe
=

λ0
λe

− 1 =
ν1
ν0

− 1 , (45)

a(t1) =
1

1+ z
. (46)
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The Time Dilation Test
A key test of the Robertson-Walker metric is that
the same formula which describes the redshift of
spectral lines should also apply to time intervals
in the emitted and received reference frames.
This has been possible through the use of Type
1a supernova which have remarkably similar
light curves (upper panel).

The lower panel shows the width of the light
curves of Type 1a supernovae as a function of
redshift. (a) A clear time dilation effect is
observed exactly proportional to (1 + z), as
predicted by the Robertson-Walker metric. (b)
The width of the light curves divided by (1 + z).
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Radiation Dominated Universes
For a gas of photons, massless particles or a relativistic gas in the ultrarelativistic limit
E ≫ mc2, pressure p is related to energy density ε by

p = 1
3ε

and the inertial mass density of the radiation ϱr is related to its energy density ε by

ε = ϱrc
2 .

If N(ν) is the number density of photons of energy hν, then the energy density of
radiation is found by summing over all frequencies

ε =
∑
ν

hνN(ν) . (47)

If the number of photons is conserved, their number density varies as
N = N0a

−3 = N0(1 + z)3 and the energy of each photon changes with redshift by
the usual redshift factor ν = ν0(1 + z). Therefore, the variation of the energy density
of radiation with cosmic epoch is

ε =
∑
ν0

hν0N0(ν0)(1 + z)4 ; (48)

ε = ε0(1 + z)4 = ε0a
−4 . (49)
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The Radiation Temperature Test

In the case of black-body radiation, the energy density of the radiation is given by the
Stefan–Boltzmann law ε = aT4 and its spectral energy density, that is, its energy
density per unit frequency range, by the Planck distribution

ε(ν) dν =
8πhν3

c3
1

ehν/kT − 1
dν . (50)

It immediately follows that, for black-body radiation, the radiation temperature Tr varies
with redshift as Tr = T0(1 + z) and the spectrum of the radiation changes as

ε(ν1) dν1 =
8πhν31

c3
[(ehν1/kT1 − 1)]−1 dν1

=
8πhν30

c3
[ehν0/kT0 − 1)−1](1 + z)4 dν0

= (1+ z)4 ε(ν0) dν0 . (51)
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Radiation Dominated Universes

This provides another key test of the change of the time dilation formula since the
temperature inferred from observations of fine structure lines in the spectra of distant
quasars should increase as (1 + z).

The fine-structure splittings of the ground state of neutral carbon atoms CI enable this
test to be carried out. The photons of the background radiation excite the fine-structure
levels of the ground state of the neutral carbon atoms and the relative strengths of the
absorption lines originating from the ground and first excited states are determined by
the energy density and temperature of the background radiation.

Author quasar redshift predicted observed
Songaila et al. (1994) Q1331+170 zabs = 1.776 7.58 K 7.4± 0.8

Ge et al. (1997) QSO 0013-004 zabs = 1.9731 8.105 K 7.9± 1.0K
Ledoux et al. (2006) PSS J1443+2724 zabs = 4.224 14.2 K consistency
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Hubble’s Law

In terms of proper distances, Hubble’s Law can be written v = Hϱ and so

dϱ

dt
= Hϱ . (52)

We have written H rather than H0 in Hubble’s law since a ‘Hubble’s constant’ H can be
defined at any epoch as we show below. Substituting ϱ = a(t)r, we find that

r
da(t)

dt
= Ha(t)r , (53)

that is,

H = ȧ/a . (54)

Since we measure Hubble’s constant H0 at the present epoch, t = t0, a = 1, we find

H0 = (ȧ)t0 . (55)

Thus, Hubble’s constant H0 defines the present expansion rate of the Universe. Notice
that we can define a value of Hubble’s constant at any epoch through the more general
relation

H(t) = ȧ/a . (56)
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Angular Diameters
Next, we work out the angular size of an object of proper length d perpendicular to the
radial coordinate at redshift z. The spatial component of the metric (34) is the term in
dθ. The proper length d of an object at redshift z, corresponding to scale factor a(t), is
given by the increment of proper length perpendicular to the radial direction in the
metric (34), that is,

d = a(t)ℜ sin
(
r

ℜ

)
∆θ = a(t)D∆θ =

D∆θ

(1 + z)
; (57)

∆θ =
d(1 + z)

D
, (58)

where we have introduced a distance measure D = ℜ sin(r/ℜ). For small redshifts,
z ≪ 1, r ≪ ℜ, (58) reduces to the Euclidean relation d = r∆θ.

The expression (58) can also be written in the form

∆θ =
d

DA
, (59)

so that the relation between d and ∆θ looks like the standard Euclidean relation. To
achieve this, we introduce another distance measure DA = D/(1 + z), the angular
diameter distance.
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Angular Diameters of objects expanding
with the Universe

Another useful calculation is the angular diameter of an object which continues to
partake in the expansion of the Universe. This is the case for infinitesimal perturbations
in the expanding Universe. A good example is the angular diameter which large scale
structures present in the Universe today would have subtended at an earlier epoch, say,
the epoch of recombination, if they had simply expanded with the Universe. This
calculation is used to work out physical sizes today corresponding to the angular scales
of the fluctuations observed in the Cosmic Microwave Background Radiation. If the
physical size of the object is d(t0) now and it expanded with the Universe, its physical
size at redshift z was d(t0)a(t) = d(t0)/(1 + z). Therefore, the object subtended an
angle

∆θ =
d(t0)

D
. (60)

Notice that in this case the (1 + z) factor has disappeared from (58).
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Apparent Intensities

Suppose a source at redshift z has luminosity L(ν1) (measured in W Hz−1), that is, the
total energy emitted over 4π steradians per unit time per unit frequency interval. What
is the flux density S(ν0) of the source at the observing frequency ν0, that is, the energy
received per unit time, per unit area and per unit bandwidth (W m−2 Hz−1) where
ν0 = a(t1)ν1 = ν1/(1 + z)?

Suppose the source emits N(ν1) photons of energy hν1 in the bandwidth ν1 to
ν1 +∆ν1 in the proper time interval ∆t1. Then the luminosity L(ν1) of the source is

L(ν1) =
N(ν1)hν1
∆ν1∆t1

. (61)

These photons are distributed over a ‘sphere’ centred on the source at epoch t1 and,
when the ‘shell’ of photons arrives at the observer at the epoch t0, a certain fraction of
them is intercepted by the telescope. The photons are observed at the present epoch
t0 with frequency ν0 = a(t1)ν1, in a proper time interval ∆t0 = ∆t1/a(t1) and in the
waveband ∆ν0 = a(t1)∆ν1.
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Apparent Intensities
We need to know how the photons spread out over a sphere between the epochs t1
and t0, that is, we must relate the diameter of our telescope ∆l to the angular diameter
∆θ which it subtends at the source at epoch t1. The metric (34) provides the answer.
The proper distance ∆l refers to the present epoch at which R(t) = 1 and hence

∆l = D∆θ , (62)

where ∆θ is the angle measured by a fundamental observer located at the source.

We can also understand this result by considering how the photons emitted by the
source spread out over solid angle dΩ, as observed from the source in the curved
geometry. If the Universe were not expanding, the surface area over which the photons
would be observed at a time t after their emission would be

dA = R2
c sin2

x

Rc
dΩ , (63)

where x = ct. In the expanding Universe, Rc changes as the Universe expands and
so, in place of the expression x/Rc, we write

1

ℜ

∫ t0

t1

cdt

a
=

r

ℜ
, (64)

where r is the comoving radial distance coordinate.
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Apparent Intensities

Thus,

dA = ℜ2 sin2
r

ℜ
dΩ . (65)

Therefore, the diameter of the telescope as observed from the source is ∆l = D∆θ.
Notice how the use of the comoving radial distance coordinate takes account of the
changing geometry of the Universe in this calculation. Notice also the difference
between (58) and (62). They correspond to angular diameters measured in opposite
directions along the light cone. The factor of (1 + z) difference between them is part of
a more general relation concerning angular diameter measures along light cones which
is known as the reciprocity theorem.

Therefore, the surface area of the telescope is π∆l2/4 and the solid angle subtended
by this area at the source is ∆Ω = π∆θ2/4. The number of photons incident upon
the telescope in time ∆t0 is therefore

N(ν1)∆Ω/4π , (66)

but they are now observed with frequency ν0.
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Apparent Intensities

Therefore, the flux density of the source, that is, the energy received per unit time, per
unit area and per unit bandwidth is

S(ν0) =
N(ν1)hν0∆Ω

4π∆t0∆ν0 (π/4)∆l2
. (67)

We can now relate the quantities in (67) to the properties of the source, using (61), (62)
and (65).

S(ν0) =
L(ν1)a(t1)

4πD2
=

L(ν1)

4πD2(1 + z)
. (68)

If the spectra of the sources are of power law form, L(ν) ∝ ν−α, this relation becomes

S(ν0) =
L(ν0)

4πD2(1 + z)1+α
. (69)
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Apparent Intensities
We can repeat the analysis for bolometric luminosities and flux densities. In this case,
we consider the total energy emitted in a finite bandwidth ∆ν1 which is received in the
bandwidth ∆ν0, that is

Lbol = L(ν1)∆ν1 = 4πD2S(ν0)(1 + z)×∆ν0(1 + z)

= 4πD2(1 + z)2Sbol , (70)

where the bolometric flux density is Sbol = S(ν0)∆ν0. Therefore,

Sbol =
Lbol

4πD2(1 + z)2
=

Lbol

4πD2
L

. (71)

The quantity DL = D(1 + z) is called the luminosity distance of the source since this
definition makes the relation between Sbol and Lbol look like an inverse square law.
The bolometric luminosity can be integrated over any suitable bandwidth so long as the
corresponding redshifted bandwidth is used to measure the bolometric flux density at
the present epoch.

∑
ν0

S(ν0)∆ν0 =

∑
ν1 L(ν1)∆ν1

4πD2(1 + z)2
=

∑
ν1 L(ν1)∆ν1

4πD2
L

. (72)
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K-corrections
The formula (68) is the best expression for relating the observed intensity S(ν0) to the
intrinsic luminosity of the source L(ν1). We can also write (68) in terms of the
luminosity of the source at the observing frequency ν0 as

S(ν0) =
L(ν0)

4πD2
L

[
L(ν1)

L(ν0)
(1 + z)

]
. (73)

but this now requires knowledge of the spectrum of the source L(ν). The last term in
square brackets is a form of what is known as the K-correction. K-corrections were
introduced by the pioneer optical cosmologists in the 1930s in order to ‘correct’ the
apparent magnitude of distant galaxies for the effects of redshifting their spectra when
observations are made through standard filters with a fixed mean observing frequency
ν0. Taking logarithms and multiplying by −2.5, we can rewrite (68) in terms of absolute
(M ) and apparent (m) magnitudes through the relations
M = constant − 2.5 log10L(ν0) and m = constant − 2.5 log10 S(ν0). We find

M = m− 5 log10(DL)−K(z)− 2.5 log10(4π) , (74)

where

K(z) = −2.5 log10

[
L(ν1)

L(ν0)
(1 + z)

]
. (75)
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K-corrections

This form of K-correction is correct for monochromatic flux densities and luminosities.
In the case of observations in the optical waveband, apparent magnitudes are
measured through standard filters which usually have quite wide pass-bands.
Therefore, to determine the appropriate K-corrections, the spectral energy distribution
of the galaxy has to be convolved with the transmission function of the filter in the
rest-frame and at the redshift of the galaxy. This is a straightforward calculation once
the spectrum of the object is known.

Although I prefer to work directly with (68) and take appropriate averages, K-corrections
are rather firmly established in the literature and it is often convenient to use the term to
describe the effects of shifting the emitted spectrum into the observing wavelength
window.
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Number Densities

We often need to know the number of objects in a particular redshift interval, z to
z +dz. Since there is a one-to-one relation between r and z, the problem is
straightforward because, by definition, r is a radial proper distance coordinate defined
at the present epoch. Therefore, the number of objects in the interval of comoving
radial distance coordinate distance r to r +dr is given by results already obtained.
The space-time diagram illustrates how we can evaluate the numbers of objects in the
comoving distance interval r to r + dr entirely by working in terms of comoving volumes
at the present epoch. At the present epoch, the radius of curvature of the spatial
geometry is ℜ and so the volume of a spherical shell of thickness dr at comoving
distance coordinate r is

dV = 4πℜ2 sin2(r/ℜ) dr = 4πD2 dr . (76)
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Number Densities

Therefore, if N0 is the present space density of objects and their number is conserved
as the Universe expands,

dN = N(z) dz = 4πN0D
2 dr . (77)

The definition of comoving coordinates automatically takes care of the expansion of the
Universe. Another way of expressing this result is to state that (77) gives the number
density of objects in the redshift interval z to z +dz, assuming the comoving number
density of the objects is unchanged with cosmic epoch. If, for some reason, the
comoving number density of objects changes with cosmic epoch as, say, f(z) with
f(z = 0) = 1, then the number of objects expected in the redshift interval dz is

dN = N(z) dz = 4πN0 f(z)D
2 dr . (78)

54



Age of the Universe

Finally, let us work out an expression for the age of the Universe, T0 from a rearranged
version of (40). The basic differential relation is

cdt

a(t)
= −dr , (79)

and hence

T0 =
∫ t0

0
dt =

∫ rmax

0

a(t) dr

c
, (80)

where rmax is the comoving distance coordinate corresponding to a = 0, z = ∞.
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Summary

1. First work out from theory, or otherwise, the function a(t) and the curvature of
space at the present epoch κ = ℜ−2. Once we know a(t), we know the
redshift–cosmic time relation.

2. Now work out the comoving radial distance coordinate r from the integral

r =
∫ t0

t1

cdt

a(t)
. (81)

Recall what this expression means – the proper distance interval cdt at epoch t is
projected forward to the present epoch t0 by the scale factor a(t). This integration
yields an expression for r as a function of redshift z.

3. Next, work out the distance measure D from

D = ℜ sin
r

ℜ
. (82)

This relation determines D as a function of redshift z.
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4. If so desired, the angular diameter distance DA = D/(1 + z) and the luminosity
distance DL = D(1 + z) can be introduced to relate physical sizes and
luminosities to angular diameters and flux densities respectively.

5. The number of objects dN in the redshift interval dz and solid angle Ω can be
found from the expression

dN = ΩN0D
2 dr , (83)

where N0 is the number density of objects at the present epoch which are
assumed to be conserved as the Universe expands.
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