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THE GRAND UNIFIED PHOTON SPECTRUM
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THE CMB AS PART OF THE GUPS

• The blackbody nature of the CMB immediately tells one it will have early universe
information encoded in it

– (Note perfection of CMB blackbody exceeded reference bb on COBE satellite
after just 9 minutes of data!)

• Currently not clear that any of the other regions of the spectrum represent a real
diffuse spectrum rather than discrete (but numerous) point sources

• Also dust and absorption of various kinds is a real problem for most of the near
infrared, optical and UV wavelength ranges (e.g Ressell and Turner, Comments on
Astrophysics, 14, 323 (1990) is still a useful survey), though CIB from Planck is
also starting to become useful

3



THE COSMIC MICROWAVE BACKGROUND

• The Cosmic Microwave Background (CMB) was emitted at about 300,000 years
after the big bang and has been propagating to us ever since

• Think about 90% of the photons make it straight to us, telling us about the physics
at the time of recombination

• Rest carry imprints of what has happened on the way

• But when emitted also has encoded in it information dating from about 10−36

seconds after the big bang
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THE COSMIC MICROWAVE BACKGROUND (CONTD.)

• Huge advances in technology in past few years, are enabling us to measure all 3 of
these aspects with rapidly increasing precision

• Has finally ushered us into an era of ‘precision cosmology’ (but also deep
mysteries)

• Will try in these 2 lectures to give an overview of the physics that goes into
producing the anisotropies

• The exciting bit about what happens at 10−36 seconds belongs to inflation (David
Seery), and current observations and implications belongs to Paolo de
Bernardis/Rafa Rebola/Lucio Piccirillo

• However, as an intellectual endeavour, think the prediction of the structure of the
CMB power spectrum, relying on detailed application of GR perturbation theory,
and atomic physics, is one of the pinnacles of modern science (first predicted
about 1968?, first seen about 1998?) and belongs right up there with the Higgs
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A USEFUL RESULT

• We’re going to start with the Liouville theorem in curved spacetime

• Sounds a bit abstract, but very useful, and gives us a quick route to understanding
important aspects of the physics of CMB anisotropies

• So the theorem is this: At each point on the worldline of a particle travelling along a
geodesic in spacetime, the local phase space density of surrounding particles is (a)
a local Lorentz invariant, and (b) constant along the worldline.

• (The Liouville bit is really part (b). Part (a) is automatic, as we’ll see.)

• The theorem as stated applies to any type of particle, but applied to photons, then
since local phase space density turns out to be Iν/ν3, where Iν is Intensity, then
we can rephrase as:

• At each point on the worldline of a photon travelling along a geodesic in spacetime,
Iν/ν3 is (a) a local Lorentz invariant, and (b) constant along the worldline.
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A USEFUL RESULT

• The proof that the phase space density is a local Lorentz invariant boils down to
the following.

• Saying that the phase space density is f(px, py, pz, x, y, z) tells you that the
number of particles with momenta in the range px to px + dpx, py to py + dpy and
pz to pz + dpz, and with positions in the range x to x+ dx, y to y + dy and z to
z + dz is

f(px, py, pz, x, y, z)dpxdpydpzdxdydz

• Next we observe that if we travel with Lorentz factor γ in the direction x say, then
relative to the rest-frame case, the infinitesimal volume factor is shrunk by a factor
1/γ (by Lorentz contraction in the boost direction) and dpx is increased by a factor
γ. (If px = m sinhα, then dpx = m coshαdα = mγdα.)

• This is for boosts, and spatial rotations are obviously ok.

• For Iν/ν3 being phase space density, remember momenta are hν/c and definition
of intensity
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APPLICATIONS TO BLACK BODY RADIATION

• Let’s apply this to black body radiation. This has

Iν =
2hν3

c2
1

ehν/kT − 1

• Thus the invariant Iν/ν3 being constant is the same as hν/kT being constant, in
other words, for b.b. radiation Trad just tracks the photon frequency

• Knowing this gives great simplifications in working out what we see in various
contexts

• E.g. for cosmological expansion, since ν ∝ 1 + z (by definition), we see
Trad ∝ (1 + z) also (in the b.b. case)

• Also, remultiplying the invariant up by ν3, we see we have proved radiation that is
initially of b.b. form, remains that way whilst propagating (as long as there are no
collisions)

• So it manages to do this, even though non-interacting (and proof is much quicker
than any other route)
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APPLICATIONS TO BLACK BODY RADIATION

• Another case: Suppose we are moving w.r.t. a black body
radiation field.

• What do we see?

• So just need to find out how photon frequency is changed relative to what we would
get with no velocity

• If p is the photon 4-momentum, v1 the 4-velocity of the moving observer and v0 is
the 4-velocity of an observer of a frame in which the b.b. radiation is isotropic, with
temperature T0 say, easy to show

p·v1

p·v0
=

1 + β cos θ√
1− β2

where β = v/c. So we deduce
Tobs(θ) =

1 + β cos θ√
1− β2

T0
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APPLICATIONS TO BLACK BODY RADIATION (CONTD.)

• This is pretty much what we’d expect to see

• Get a dipole around the sky proportional to cos θ

• But the angle θ we’re using here is measured in the frame in which the radiation is
isotropic

• What do things look like in terms of the angle the moving observer would measure?

• So have to include the abberation formula

cos(θ′) =
cos(θ) + β

1 + β cos θ

• Solving for cos θ and substituting, get

Tobs(θ′) =

√
1− β2

1− β cos θ′
T0
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APPLICATIONS TO BLACK BODY RADIATION (CONTD.)

• Can get a clearer idea of what this means by expanding to 2nd order in β

• Find

Tobs(θ′) ≈ T0(1 + β cos θ + 1
2β

2 cos 2θ)

• So the abberation has induced a quadrupole anisotropy, proportional to (v/c)2

• Known as the kinematic quadrupole

• Interesting to compare current invariant-based method with the early calculations in
this area

• E.g. Condon & Harwit (Phys.Rev.Lett., 20, 1309 (1968)) gave first derivation of this
effect, considering time dilation, transformation of solid angles, frequency
transformation, aberration, transformation of detector area, etc, and got:
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APPLICATIONS TO BLACK BODY RADIATION (CONTD.)

• So they had a frequency dependent ef-
fect (therefore not b.b. afterwards) ac-
tually going wrong way round at lower
frequencies!

• First people to get it right were Pee-
bles & Wilkinson, Phys.Rev. 174, 2168
(1968)

• They also had to consider all the above
effects and combine them to get result

• First to do it simple way using the in-
variant was Forman, Planet.Space.Sci.,
18, 25 (1970), in the context of the
Compton-Getting effect in cosmic ray
physics, where a dipole due to the
Earth’s motion had first been noticed in
the 1930’s

• So what do we actually see for the
CMB?

VOLUME 20, NUMBER 23 PHYSICAL REVIEW LETTERS 3 JUNz 1968

MEANS OF MEASURING THE EARTH'S VELOCITY THROUGH THE O' RADIATION FIELD

J. J. Condon and M. Harwit
Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14850

(Received 20 January 1968)

The velocity of the earth's motion with respect
to the rest frame of the O'K cosmic background
radiation can be determined by measuring the
anisotropy of the radiation. Partridge and Wil-
kinson' attempted to detect this anisotropy at ~
=3.2 cm; they were able to set an upper limit of
300 km/sec to the component of velocity of the
earth which lies in the plane of the earth's equa-
tor. The purpose of our Letter is to show that
such measurements can best be made with wide-
band detectors that are sensitive at millimeter
infrared wavelengths where a number of labora-
tories, including ours, are about to make rocket
observations.

Suppose that an extended source of radiation
emits N(v) photons per unit area per unit time
per unit bandwidth so that its brightness is B(v)
=kvN(v). If an observer approaches the source
with velocity v =Pc, v «c, he will see the photons
emitted at frequency p Doppler shifted up to fre-
tluency 'v= v(1 +p). Furthermore, in a time in-
terval 6t his detector will sweep up the photons
emitted by the source during the time interval
(1+P)ht. Thus, by photon conservation,

N'(v')dv ' = N(v)dv (1+P)

so

B'(v')dv' B(v)dv
1kv' hv

B'(v') = B(v')+Pv' (1+P),
dB(v')

dv

where the top signs refer to an observer ap-
proaching the radiation source and the bottom
signs refer to a receding observer. If the source
emits blackbody radiation with temperature T,
then

B(v') = (2kv' /c )(e -1)
and

0(,&, )f f(x)=dx,

P =P x 6 x 10 ' erg/sec.

2.5—

2.0—

F(X)
1.5—

spect to the radiation source is

R = 1+2Pxe"/(e —I)—4P

where x =kv'/kT. For a detector of unit through-
put (1 cm' sr), the received power of the useful
anisotropy signal, which is the difference be-
tween the signals seen in the parallel and anti-
parallel directions, in the range v, '=kTx, /k to
v2'=kTx, /k, is

~44 x, 3 x
4k T * ( 2)„23 x xc k x e —1(e —1

The dimensionless function

3 x
fk)= " „'-2)

e —1(e —1

is plotted in Fig. 1. At low frequencies it is neg-
ative, indicating that the detector receives less
power from an approaching source than from a
receding one. f(x) becomes positive for x & 1.60
and has a strong maximum near x = 4.5.

In the case of the O'K radiation field, almost
all of the anisotropy signal power is found in the
region around 1 = 1 mm. The total anisotropy
signal power that would be received by a bolo-
metric detector of unit throughput because of the
earth's motion with respect to the radiation is

B'(v') = B(v') 1 + P

If the anisotropy of the received signal is small,
then the ratio 8 of the signal powers seen by an
observer looking alternately parallel and anti-
parallel to the direction of his motion with re-

0 I

I 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16
X-.2 5—

FIG. 1. Relative anisotropy signal strength f(x) (di-
mensionless) as a function of &=hv' jkT.

From Harwit & Condon (1968) 12



THE CMB DIPOLE
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THE CMB DIPOLE

• As is well understood now, most if not
all of this is due to the peculiar motion of
the Earth/Sun/Galaxy/Local Group sys-
tem

• There is indeed a kinematic quadrupole
induced by this motion, and we have to
be careful to subtract this in order to dis-
cover the primordial monopole

• Also we don’t really know how much of
the dipole might still be primordial —-
presumably small since we get a fairly
good alignment of CMB dipole with that
from peculiar velocity surveys, but still
an open question

No. 2, 1998 PECULIAR VELOCITY DIPOLES OF FIELD GALAXIES L93

Fig. 1.—Dipole parameters of solutions 3, 5, 7, 9, and 11 are plotted as
open circles, those of solutions 4, 6, 8, 10, 12, and 13b are plotted as filled
circles, and those of solutions 15–19 are plotted as starred symbols. The dashed
line in (a) corresponds to the amplitude of the CMB dipole, 611 km s21. The
apices of the LG motion with respect to the CMB and the Lauer & Postman
(1994) cluster sample are labeled as “CMB” and “LP” in (b).

dowing is carried out for different variables ( and cz, re-czTF

spectively). A small fraction of objects with large (greater than
1.5 mag), possibly spurious magnitude offsets from the adopted
TF relations were excluded in the calculations of dipole
parameters.

The parameters of the dipole solutions 3–13 and 15–19, as
listed in Table 1, are displayed in Figure 1. The amplitudes are
shown in Figure 1a: inverse TF solutions are identified by
circles (open and filled for the SFI and SFI1 samples, respec-
tively), while direct TF solutions are displayed as starred sym-
bols. The horizontal dashed line is the 611 km s21 amplitude
of the CMB dipole. Figure 1b shows the apices of the dipole
solutions, plotted in galactic coordinates. The large, crossed
circle identifies the CMB dipole, and the large square is the
apex of the LG motion with respect to the Abell cluster sample
reported by Lauer & Postman (1994).

The reflex motion of the LG with respect to field galaxies
within 2000 km s21 exhibits a relatively small amplitude and
appears directed toward high galactic latitude. This is in agree-
ment with the expectation that such motion is largely affected
by the presence of the density enhancement represented by the
Local Supercluster, centered on the Virgo cluster (M87 is at

, ). As the radius of the shell increases, how-C Cl 5 284 b 5 174
ever, the LG reflex motion asymptotically approaches ,VCMB

both in amplitude and apex direction. Within the uncertainty
of the measurement, the two quantities become indistinguish-
able at distances larger than ∼4000 km s21. This result is con-
sistent with the determination obtained with a completely in-
dependent cluster data set by Giovanelli et al. (1998) and
excludes with a high degree of confidence (greater than
99.99%) the possibility that the LG may exhibit a dipole such
as reported by Lauer & Postman (1994), with respect to the
contents of any shell within a distance of 8000 km s21.

The dipoles of the global samples (1, 2, and 14) depart from
the CMB dipole at a significant level. The equal-vol-
ume–weighted solutions (labeled “b”) are noisier than those
obtained with , an expected result since the former[w ] { 1i

give higher weight to more distant objects and errors in the
peculiar velocity rise linearly with distance. The difference

for any of the solutions in Table 1 yields the bulk(V 2 V )CMB d

flow motion of the corresponding sample with respect to the
CMB. Because many of the dipole solutions match the CMB
dipole so closely, resulting bulk flows are quite modest and
their directions largely unconstrained. Bulk flows associated
with solutions 1b, 2b, and 14b give an estimate of the motion,
filtered by a top-hat function, of the local universe within 6500
km s21. The average of those three solutions is 200 5 65
km s21 toward . This is in generalC C(l, b) 5 (295 , 1 25 ) 5 20
agreement with the direction of bulk flows reported in other
studies (da Costa et al. 1996; Courteau et al. 1993; Dekel 1994),
but it is smaller than other determinations, which range between
270 and 400 km s21. It agrees well in amplitude and direction
with the bulk motion with respect to clusters of galaxies within
9000 km s21 and with measured TF distances (Giovanelli et
al. 1998). It should be pointed out that the bulk flows associated
with solutions 1a, 2a, and 14a are somewhat larger, approaching
300 km s21 amplitude in the case of solution 1a. These solutions
do, however, weigh nearby galaxies heavily, and the bulk flow
solutions are representative of a significantly smaller effective
volume than those for cases 1b, 2b, and 14b.

In summary, we obtain that the reflex peculiar motion of the
LG with respect to field spiral galaxies approaches convergence
with the CMB dipole within 6500 km s21. The dipole moment
of the LG motion with respect to the outer shells of that volume

agrees with the CMB dipole within the uncertainties. The mo-
tion of the LG with respect to spiral galaxies within 2000
km s21 is consistent with its being influenced by the mass excess
represented by the Local Supercluster. It can be excluded to a
high degree of confidence that the LG motion may exhibit a
dipole like that reported by Lauer & Postman (1994), with
respect to the contents of any shell within a distance of 8000
km s21. Finally, the bulk flow with respect to the CMB reference
frame of a sphere of 6500 km s21 radius, bound by a top-hat
window, is km s21, directed toward200 5 65 (l, b) 5

.C C(295 , 1 25 ) 5 20

The results presented in this Letter are based on observations
carried out at the Arecibo Observatory, which is part of the
National Astronomy and Ionosphere Center (NAIC), at Green
Bank, which is part of the National Radio Astronomy Obser-
vatory (NRAO), and at the Kitt Peak National Observatory
(KPNO), the Cerro Tololo Interamerican Observatory (CTIO),
the Palomar Observatory (PO), the Observatory of Paris at
Nançay, and the Michigan-Dartmouth-MIT Observatory
(MDM). NAIC is operated by Cornell University, NRAO by
Associated Universities, Inc., and KPNO and CTIO by As-
sociated Universities for Research in Astronomy, all under co-
operative agreements with the National Science Foundation.
The MDM Observatory is jointly operated by the University
of Michigan, Dartmouth College, and the Massachusetts In-
stitute of Technology on Kitt Peak, Arizona. The Hale telescope
at PO is operated by the California Institute of Technology

From Giovanelli et al., 1998 (Ap.J., 505, L91)
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THERMAL HISTORY OF THE UNIVERSE

• Now move on to giving a sketch of
the important things about ‘back-
ground universe’ evolution we need
in order to understand perturba-
tions

• These are basically thermal his-
tory, matter versus radiation dom-
ination, and horizons

• The universe’s energy density is domi-
nated initially by the cosmic microwave
background CMB, and this is in ther-
mal equilibrium with matter through to
recombination. At this point the uni-
verse suddenly becomes transparent,
and the photons propagate freely to-
wards us.
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t 0

Matter and radiation

in T.E. The matter is

ionized so free electrons

present a large scattering

x-section to the photons

z ≈ 1400
Trad = Tmatter ≈ 4000K

z = 0
Trad = 2.76K

Matter recombines and
becomes neutral =⇒
photons propagate freely
towards us
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EPOCH OF EQUALITY

• If scale back from the present day (when matter energy density dominates) to the
past, ρrad increases like (1 + z)4 while ρmatter increases like only (1 + z)3

• This means there is an epoch when they are equal — timing of this is very
important to perturbations, as we’ll see

• On all plausible values of parameters, happens before recombination
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• On this timeline, equality typically happens at about 13,000 years

• Recombination would occur much earlier than at about 4000 K, or 300,000 years,
as shown, if it just depended on 13.6 eV = kT

• This in fact would be about 160,000 K!

• Subtleties of recombination are due to two-photon decay process, plus fact that
interactions drop out of Saha equilibrium as universe expands

• MSL will cover this
17



• Remaining background topics concern ‘horizons’ and inflation, plus want to give a
preliminary sketch of CMB anisotropies and their description, before we move onto
the details

• To understand a bit about horizons and the development of structure, will talk a bit
about inflation

• Following two curves show computations for the development of the scalar field
and universe scale factor versus time in simple chaotic inflation (V (φ) = 1

2mφ
2)

• The perturbations we are interested in are thought to be generated by quantum
field theory fluctuations during the development shown — how do we characterise
them statistically?
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THE PRIMORDIAL POWER SPECTRUM

We are interested in the amplitude of fluctuations as a function of scale. therefore we
Fourier analyse them, and express in terms of a comoving wavenumber k, related to
the physical wavenumber kp via k = Rkp.

The power spectrum is defined as the contribution to the variance of the fluctuations
per unit logarithmic interval in k. So if the spatial fluctuations in φ are δφ(x), we define

〈δφ(x)δφ∗(x)〉 =
∫ ∞

0
P (k) d(ln k)

Now the Fourier transform relation (not worrying about the normalisation) is

δφ(x) ∝
∫
δφk e

ik·x d3k

so since d3k = 4πk2dk and d(ln k) = dk/k, putting the two together we find

P (k) ∝ k3|δφk|2

We can estimate the fluctuations δφk via the following heuristic argument. (Don’t worry
about the details!)
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If we were working in a simple Minkowski spacetime, the equation of the scalar field is a
simple harmonic oscillator-type equation, and for this it is well-known how to quantise.
The basic mode with wavenumber kp is

δφkp ≈
1

V 1/2

e−ikpt√
2kp

Here V is some normalising volume, and one can get the factors by demanding that the
‘norm’ of state (basically the integral of the time component of the 4d current) evaluates
to 1 in Planck units.

Now in our present case, we take the normalising volume as being defined by the
scalefactor R, so V ∝ R3. Converting to comoving wavenumber, we thus get

δφk ∝ R−3/2e
−ikt/R√
2k/R

=
e−ikt/R

R
√

2k

Feeding this into the expression for the power spectrum, we get

P (k) ∝
(
k

R

)2



• Now we need to get to grips with a key feature of the development of perturbations

• This is related to the concept of the ‘comoving Hubble radius’

• We can see that c/H (= 1/H here, since we are taking c = 1) is a distance

• It is called the Hubble radius or Hubble length

• We can make it a comoving measure by dividing by R, and the resulting quantity is

1

RH
= comoving Hubble radius

Note:
WARNING!

This distance is often called the comoving horizon radius. However, ‘horizon’ here is
being used in a loose sense. The quantity c/H generally does work out to be some
multiple of the proper distance across the particle horizon.



For example, in Einstein de Sitter case we have H = 2/(3t) and so c/H = (3/2)ct,
which is half the proper distance across the particle horizon.

However, we should be clear that:

particle horizon exists at time t if χp(t) =
∫ t
0 c dt

′/R(t′) is finite

proper distance across particle horizon at time t = R(t)χp(t)

whilst

horizon as a word can mean any of ‘particle’ horizon, or ‘Hubble radius’ or the horizon
of a black hole (which technically is known as an event, rather than particle horizon).

• Carrying on, let us look more closely at the comoving Hubble radius (or ‘comoving
horizon’, in the loose way of speaking) in relation to inflation

• H is by definition Ṙ/R and so RH is in fact just Ṙ.

• We thus see that



inflation is ocurring⇐⇒ R̈ > 0

⇐⇒ the comoving horizon distance (= 1/Ṙ) is decreasing

• Thus a fluctuation with a fixed comoving scale 1/k, can ‘start within the horizon’
(we think this is how all the quantum perturbations start)

• but then as time goes on during inflation, they will suddenly find themselves
‘outside the horizon’, since the latter is shrinking. This is illustrated in the next
figure.



• How does the fluctuation respond to
this?

• During the period it is inside the hori-
zon, it oscillates happily.

• However, as soon as it leaves the hori-
zon (i.e. when 1/(RH) becomes less
than 1/k), then suddenly it ‘freezes’.

• We can think of this as oscillations
needing causal connectedness (‘one
part needs to feel another part’) and
once this is lost, it can no longer oscil-
late, and so stays where it had got to
just before horizon crossing.

• This effect is illustrated in the second
plot, again from a real computation for
the fluctuation evolution (see Hobson,
Efstathiou & Lasenby for details)

–40

–30

–20

–10

C
o
m

o
v
in

g
 h

o
ri
z
o
n
: 

-l
n
(R

H
)

8 10 12 14 16

ln tln t

h
u
b

b
le

ra
d

ln t

lo
g
co
m
ov
in
g
H
u
b
b
le

d
is
ta
n
ce

1/
(R

H
)

fixed comoving scale 1/k

-4

-2

0

2

4

8 10 12 14 16

ln t
z
e
ta

ln t

‘δ
φ
k
’

20



We can now finally evaluate the power spectrum of the fluctuations, P (k).

The expression we found before

P (k) ∝
(
k

R

)2

clearly needs to be evaluated at ‘horizon crossing’, since nothing changes after that. At
horizon crossing, k = RH, so we obtain

P (k) ∝ H2
∣∣∣
horizon crossing

But during inflation, H is more or less constant.

• See for example the plot of lnR versus t earlier

• Straight line section implies H ∼ const. since H is by definition the slope of lnR

versus t.)

• So P (k) is more or less constant as well.

• I.e., we get approximately equal power per unit logarithmic interval in k as a
function of k in the primordial spectrum coming out of inflation!



• This is what provides the primordial spectrum of matter perturbations from which
galaxy formation starts.

• So far all evidence points to an approximately scale-invariant spectrum as being in
good agreement with the observations.

• We can see effects of it directly in e.g. COBE or WMAP data on large scales (say
` <∼ 50) (will explain this shortly).

• These have not been processed by ‘recombination’, and the acoustic oscillations
that occur there — and one finds observationally (see next section) that the CMB
spectrum there is basically flat.

• In fact might go further, and think about corrections to this prediction.

• If we examine the slope of the lnR versus t curve shown earlier, we see that H
(the slope of the curve), will not be quite constant, but will decrease slightly as time
progresses.

• Now, from the plot of ln(1/(RH)) versus ln t just now, we see that later times
correspond to the horizon exit of larger k’s.

• Would therefore predict a slightly reduced amplitude of fluctuations at large k (i.e.
small linear scales) as compared to small k (large linear scales).



• Amazingly, this prediction (that the ns in P (k) ∝ kns−1) is just less than 1, which
depends on the details of the mechanism of inflation, is also borne out by the
observations, and we are beginning, from the CMB, to get hard quantitative
evidence about the dynamics of inflation.

IMPRINTS ON CMB — THE POWER SPECTRUM

Figure shows the power spectrum as pre-
dicted in a particular theory. It is expressed
in terms of the power at different spherical
harmonics, i.e. the sky is decomposed into
a set of spherical harmonics Y`m and the
power in these plotted as a function of `

• E.g. ` = 1 is the dipole, ` = 2 is a quadrupole, etc..

• Rough equivalence in terms of angular scale on the sky is shown at the bottom.



• (Note statistical isotropy guarantees that the power is a function of ` only, not m.)

• A key predicted feature is the series of peaks at the right of this picture, starting at
` ∼ 200, or angular scale ∼ 1◦.

• These are so called ‘acoustic peaks’, and correspond to coupled acoustic
oscillations of the coupled photon/matter fluid during recombination, and have a
wealth of physical information encoded in them.

• The flatter region at the left, corresponding to where the COBE measurements
were made, is called the Sachs-Wolfe plateau, and helps fix the overall
normalisation.

• This is also the region where the reprocessing effects on the primordial spectrum
which turn it into the CMB power spectrum during recombination, are minimal, and
where we get a direct glimpse of wholly primordial processes.



PROGRESS ON THE DATA IN THE LAST 10 YEARS
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CURRENT WMAP AND SPT POWER SPECTRUM RESULTS
12

Fig. 5.— The SPT bandpowers, WMAP bandpowers, and best-fit ΛCDM theory spectrum shown with dashed (CMB) and solid
(CMB+foregrounds) lines. The bandpower errors do not include beam or calibration uncertainties.

Fig. 6.— The one-dimensional marginalized constraints on the six cosmological parameters in the baseline model. The constraints from
SPT+WMAP are shown by the blue solid lines, while the constraints from WMAP alone are shown by the orange dashed lines.

Keisler et al (arXiv:1105.318)

• Think one could now reasonably claim that 9 peaks have been measured in the
CMB power spectrum!
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SUMMARY IN TERMS OF SCALES

  

Summary:

(From lecture notes by George Eftstathiou)
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COSMOLOGY IN CONFORMAL TIME

• Turns out to be convenient when dealing with perturbations to work not with cosmic
time, t (which corresponds to the proper time of a comoving observer), but with
what’s called conformal time, η

• Starting with the usual flat metric

ds2 = dt2 − a2(t)δijdx
idxj

with a(t) replacing the previous R(t) as scale factor(!), we transfer the a outside

ds2 = a2[dη2 − δijdxidxj]
defining thereby a conformal time η

η =
∫ t

0

dt

a(t)

• Since we’ve ended up with a rescaling by a function a(η) of the flat space metric,
clear why it’s called conformal
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COSMOLOGY IN CONFORMAL TIME

• We can do all this as well for curved models, and for models with a cosmological
constant, but actually for our purposes, where we’re working mainly with the early
universe (up to recombination say), effects of both these are fairly small

• So actually, only explicit cases we’re going to need are for the simple flat Einstein
de Sitter models, for radiation and matter

• Radiation dominance: Here we know a(t) = At1/2, for some constant A

• Using this, we can work out the results

η =
2

A
t1/2, a(η) =

A2

2
η, H ≡ 1

a2

da(η)

dη
=

2

A2η2

and these give the crucial result for the comoving horizon distance in radiation
domination

1

aH
=

(
A2

2
η

2

A2η2

)−1

= η
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COSMOLOGY IN CONFORMAL TIME

• or

(aH)rad dom =
1

η

• Note how the constant A drops out of this result

• We can also do the same for matter domination

• Matter dominance: Here we know a(t) = At2/3, for some constant A

• Using this, we can work out the results

η =
3

A
t1/3, a(η) =

A3

9
η2, H ≡ 1

a2

da(η)

dη
=

18

A3η3

and these give the crucial result for the comoving horizon distance in matter
domination

1

aH
=

(
A3

9
η2 18

A3η3

)−1

=
η

2
, so this gives (aH)mat dom =

2

η
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PLAN FOR REST OF LECTURES

• Have now got the background in place for what we need

• Going to begin, as regards perturbations and their effects on the CMB, with
something which normally comes near the end — the effects tensor perturbations,
ie. gravity waves!

• Only doing this for the effect on temperature (will leave polarization to Jose
Alberto), and for these actually this is more of less the simplest perturbation to deal
with, hence starting with it!

• Will then lead on to general scalar perturbations expressed within GR — this is
core of what we treat, and progress from this through pressureless perturbations
(fairly simple) to the coupled photon/baryon fluid (quite complicated)

• Note will not cover all the aspects that are involved in getting through to the final
answers for the C`’s

• Have decided this would take about a lecture course with many more lectures to do
properly!

• But hope by treating some aspects in detail to give a flavour
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GRAVITATIONAL WAVES

• Tensor metric perturbations ds2 = a2[dη2 − (δij + 2hij)dx
idxj] where hij is

traceless and transverse

• If substitute this into Einstein equations, and use modes of the form exp(ikix
i),

then find

ḧij + 2aHḣij + k2hij = 8πGΣT
ij

where ΣT
ij is the transverse and traceless part of the anisotropic stress

• Express hij in terms of the two independent gravitational wave polarization
components, h+ and h×

• Can ask how solutions will behave during matter domination

• As we’ve said, if a ∝ t2/3 then η ∝ t1/3 and then a ∝ η2 means that the
combination aH is 2/η

• With no further sources, the equation we need to solve is then of the form

ḧ+
4

η
ḣ+ k2h = 0
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• Two independent solutions:

h ∝ 1

η3
(cos(kη)kη − sin(kη)) and h ∝ 1

η3
(cos(kη)kη + sin(kη))

• Find following behavior as one goes back in time: only one of these is non-singular,
and here can write

h+,×(η) = − 3

k3η3
(cos(kη)kη − sin(kη))h+,×(0) = 3

√
π

2

J3/2(kη)

(kη)3/2
h+,×(0)

• So this is solution for scales entering the horizon well after matter domination

• Note that overall η dependence for large η is 1/η2 ∝ 1/t2/3 ∝ 1 + z, so the
gravitational perturbations redshift away inside the horizon — quite unlike the
scalar perturbations

• Therefore only important at degree scales and above

• Can discuss details of the horizon crossing easily in this simple EdS model

• Comoving horizon radius 1
RH is η/2 (found this earlier for matter domination)

• Thus the condition 1/khc = 1/(RH) yields khcη = 2

• So looking at a plot of h+,×(η) solution we can see if intuition about oscillations
starting once horizon has been entered are correct
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• Indeed see that khcη = 2 is a reasonable estimate of where the oscillations begin

• Since have assumed EdS, also easy to work out range of comoving k’s under
which assumption of using solution corresponding to matter domination is valid
(note details here illustrative — real universe of course has Λ, amongst other
things)

• In EdS, matter-radiation equality happens at about 13,000 years, and current age



(determined from H0) would be about 9 Gyr, thus

ηequality

ηnow
=

(
13× 103

9× 109

)1/3

≈ 0.011

and so scales satisfying our assumption will be up to about 1/100th of the current
horizon scale

• Jumping to the answer for currently believed models, we find the following graphs
for predicted tensor component in the temperature of CMB, confirming our general
picture



• The r here refers to the ratio of the scalar P (k) to the gravitational one at some
given k (typically low)

• But how does the hij perturbation actually get trans-
ferred to the CMB temperature?

• Let’s be more specific about our gravitational wave

• Take direction of propagation to be z, then can en-
code transverse, traceless nature via

h11 = h+(t, z), h12 = h×(t, z), h22 = −h11, h21 = h12

and all other h components 0

• Now assume photon motion is inwards, making angle β with plane of polarization
of wave, and at an angle α within plane

• If p is the photon 4-momentum, and v the velocity of a comoving observer, then
define observed frequency by hν = p · v

• Then the geodesic equation in this metric leads (to first order) to

ν̇ = −ν ȧ
a

+ 1
2ν cos2 β

(
ḣ+ cos 2α− ḣ× sin 2α

)



• The first part is just the ordinary redshift, the second gives the perturbation we are
after

• Employing our generalized Liouville approach, know that the temperature
perturbation must satisfy

∆T

T
= 1

2 cos2 β
(
ḣ+ cos 2α− ḣ× sin 2α

)
• Can clearly see spin-2 nature of interaction of photon with gravitational wave

• Written more generally, and integrating over photon path, we get

Θ(n̂) ≈ −1
2

∫ η0

η1

dη ḣijn̂
in̂j

for η1 some suitable early epoch, which is the basic expression for the
gravitational Sachs-Wolfe effect

• As we’ve seen, only contributes on large scales since hij decays like a−1 after
entering horizon



GR TREATMENT OF PERTURBATIONS

• One can give a pretty good account of the development of perturbations of baryons
and cold dark matter on sub-horizon scales, as long as the baryons aren’t coupled
to radiation, using Newtonian perturbation theory

• However, for CMB we do have to consider epoch when photons are baryons are
tightly coupled

• Also want to understand effects of horizon scale in a clear fashion, and to be able
to deal with epochs when background universe is radiation dominated

• For all this, need to use GR perturbation theory, and of course this includes
Newtonian theory as a limit

• So that’s what we looking at here, bypassing going through the Newtonian route

• Definitely more complicated, but does all the things we need
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GR TREATMENT OF PERTURBATIONS (CONTD.)

• A problem one hits immediately in the GR approach is gauge ambiguities

• Physical results in GR are insensitive to the choice of coordinates (freedom from
this is one of the things GR is built upon)

• In cosmology this is particularly acute. E.g. given a scalar perturbation we could
define a slicing of spacetime by calling all the points where the scalar has the same
value a given slice, and attaching a ‘time’ value to it

• Then the spatial perturbations seem to have gone away, but have they really?

• Two ways round this — either work in gauge-invariant variables (as developed by
Bardeen, and see also arXiv:astro-ph/9804301 and arXiv:astro-ph/9804150 by
Challinor & Lasenby), or remove the gauge freedom by insisting upon a particular
choice of coordinates which achieves this

• Will work via second of these routes, using the Conformal Newtonian Gauge
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REACHING THE CONFORMAL NEWTONIAN GAUGE

• Most general first order metric perturbation is

ds2 = a2(η)
{

(1− 2A)dη2 + 2Bidηdx
i −

[
(1 + 2D)δij + 2Eij

]
dxidxj

}
• Here i labels spacelike coordinates, A and D are scalar functions, Bi is known as

the shift function (and A the lapse function), and the 3d tensor Eij is distinguished
from the δij part by being traceless

• This is pretty complicated, and clearly contains all of scalar, vector and tensor
perturbations

• Currently, we are only interested in the scalar modes but arbitrary coordinate
transformations applied to these can generate all the terms we’ve got here! (i.e.
‘apparent’ perturbations)

• But this is actually good! Using such transformations, and knowing that we have
physically only scalar perturbations present, then can use such coordinate
transformations to ‘undo’ most of the degrees of freedom in above metric, and find
one is left (uniquely) with the following form, where the remaining d.o.f. can’t be
‘gauged’ away
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TREATMENT IN CONFORMAL NEWTONIAN GAUGE

• Find one is left with

ds2 = a2(η)
{

(1− 2Ψ)dη2 − (1 + 2Φ)δijdx
idxj

}
where we have changed notation with A 7→ Ψ and D 7→ Φ

• This is called the Conformal Newtonian Gauge

• ‘Conformal’ since we use the conformal time η, and Newtonian since we recognise
(if we had Ψ = Φ) the approximate linearised form of GR metric in the case where
Φ is the Newtonian gravitional potential. (E.g. think of expanding the standard
Schwarzschild metric in isotropic coordinates to first order in Φ = −GM/r.)

• Will see shortly that the difference Ψ−Φ depends on the presence of anisotropic
stress

• So will use this metric to calculate the GR connection and curvature tensor, and
from this the Einstein tensor Gµν, which we will put in the Einstein equations

Gµν = 8πGTµν

where Tµν is the stress-energy tensor
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TREATMENT IN CONFORMAL NEWTONIAN GAUGE

• For the latter one needs to adopt a first order perturbed form

• For a fluid, have

T0
0 = ρ+ δρ

T i0 = −T0
i = (ρ+ P )vi

T ij = −(P + δP )δij −Σi
j

where Σij is the anisotropic stress, usually written in dimensionless form as
Πij = Σij/P

• Find that the Einstein tensor piece corresponding to this (i.e. removing isotropic
component) is

δGij =
1

a2

∂2

∂xi∂xj
(Ψ−Φ)

so for fluids without anisotropic stress (e.g. CDM, or tightly-coupled photon-baryon
fluid, but not neutrinos) we can ignore the distinction between the two gravitational
potentials
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PERTURBATION EQUATIONS

• So one now works out the perturbation equations from the Einstein equations.

• Just two further things we have to be clear on. It is generally much easier for
perturbations to work with those corresponding to a given Fourier component. So
we will here assume (implicitly) a multiplying functional form of exp(ik · x) for all
components

• Note k and x are both comoving quantities here, so we don’t need e.g. any extra
a(η)’s in this expression

• Secondly, we are working with the scalar mode for perturbations

• Applied e.g. to velocity, these are those that are derivable by taking the gradient of
a velocity potential, and therefore whose curl (the vorticity) vanishes

• This vorticity part is sourced by vector perturbations, and there’s two important
things to understand about these

– They always decay with time — i.e. there’s no growing mode

– In standard cosmology with inflation there’s no source for them — one needs
e.g. active sourcing by topological defects to get appreciable effects from them,
so overall we can ignore them here
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PERTURBATION EQUATIONS

• Since velocity is a gradient, and ∂/∂xi brings down an iki, we can define a ‘scalar
velocity potential’ V by

vi =
−iki
k
V

where we’ve divided by k so that V ≡ |v|

• Note that v is parallel to k

• This is the distinguishing feature of scalar velocity perturbations — a vector
perturbation is that part of the Fourier transform of the velocity field at a given k,
which is perpendicular or transverse to k, hence also the name ‘transverse
perturbations’ for these

• Two more (much simpler) pieces of nomenclature — call the fractional density
perturbation δ ≡ δρ/ρ and (as before) have w ≡ P/ρ

• Now ready to give the full set of perturbation equations

• Lyth & Liddle give the equations in a nice form (which I’ve checked)
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PERTURBATION EQUATIONS

δ̇ = −(1 + w)(kV − 3Φ̇) + 3aHw
(
δ − δP

P

)
Continuity equation

V̇ = −aH(1− 3w)V − ẇ

1 + w
V + k

δP

ρ+ P
− 2

3
k

w

1 + w
Π = kΨ Euler equation

δ + 3
aH

k
(1 + w)V = −2

3

(
k

aH

)2
Φ ‘Poisson equation’

Π =
(
k

aH

)2
(Ψ−Φ) Anisotropic stress equation

• Notice the second two don’t involve derivatives — they are constraint equations

• There’s also an equation which Lyth & Liddle don’t give, but which is equally
important in defining a set of propagation equations and constraints

• This is

Φ̇ =
3(aH)2

2k
V (1 + w)− (aH)Ψ
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PERTURBATION EQUATIONS

• Can use this in the δ̇ equation, to make the r.h.s. of that be composed of
undifferentiated quantities

• Then can see that (in the case where the anisotropic stress vanishes), we have 3
propagation equations for 3 quantities (δ, V and Φ) and 1 constraint

• Differentiating the constraint, and substituting the derivatives from the propagation
equations, one finds that the result is just the constraint again

• So can indeed propagate the quantities self-consistently, given some initial
conditions

• What are these initial conditions?

• Before considering that, let’s just look at some overall features of these equations
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PERTURBATION EQUATIONS

• The structure and consequences of these are determined by (a) the equation of
state w; (b) the comoving wavenumber k; (c) the comoving horizon radius 1/(aH)

(note a and H always occur in this combination) and (d) the ratio of these last two,
which expresses whether a given mode is (a reminder)

Inside the horizon, so k > aH, Outside the horizon, so k < aH

• Will get quite different behaviours depending on the values of these quantities

• Other general feature to note is that we’ve pretended in writing them that there’s
one fluid

• In fact we have each of CDM, photons, baryons and neutrinos to worry about
during the relevant period

• The equations we’ve written will be valid for the total perturbations, and of course
there’s always just one Φ and Ψ which respond to the totals formed by the rest

• If a fluid is not busy exchanging energy and momentum with the other fluids, then
each separately will satisfy a version of the equations in which δ and V just for that
fluid satisfy the equations
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• This is true for the CDM all the time, and the baryons after they lose the pressure
support of the photons

• Otherwise, we treat the photons and baryons as a single ‘tightly coupled’ fluid, with
mean values for w etc.

• In particular, since Thomson scattering doesn’t change the photon and electron
energies, the two fluids satisfy separate continuity equations appropriate to their
different w’s:

δ̇γ = −4

3
kVγ + 4Φ̇, δ̇B = −kVB + 3Φ̇

but a joint Euler equation for the joint velocity Vγ = VB:

V̇γ = −aH(1− 3weff)Vγ −
ẇeff

1 + weff
+
k

3

ργ

ρB + ργ
δγ + kΨ

where the effective equation of state is

weff =
Pγ

(ργ + ρB)

• Come back to this, in the meantime:



SOLUTION FOR PRESSURELESS CASE

• We can get an explicit analytic solution if we assume a single pressureless fluid
evolving in a matter dominated background

• So this is appropriate to either CDM at any time after zeq, or to the baryons above
their Jean’s scale after decoupling

• With w = 0, the simplest form of equations comes from eliminating V using the
‘Poisson equation’ constraint

• We get

δ̇ =
9(aH)2 − 2k2

6aH
δ +

27(aH)4 + 9(aH)2k2 − 2k4

9(aH)3
Φ

Φ̇ = 1
2aHδ +

k2 + 3(aH)2

3aH
Φ

• So have two first order coupled equations

• Standard procedure now is eliminate one of the variables, in order to get a second
order equation expressed solely in terms of the remaining variable

• In the linear case, we can generally solve this. Let’s do this here to illustrate
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SOLUTION FOR PRESSURELESS CASE

• Let’s use the δ̇ equation to solve for Φ, and then substitute this into Φ̇ equation

• We get

δ̈ +
aH

27(aH)4 + 9(aH)2k2 − 2k4

{(
81(aH)4 + 18k2(aH)2 − 2k4

)
δ̇

−3

2
aHk2

(
21(aH)2 − 2k2

)
δ

}
= 0

• Looks complicated, so let’s do it other way round instead, i.e. use the Φ̇ equation to
solve for δ, and then substitute this into δ̇ equation

• Get

Φ̈ + 3aHΦ̇ = 0

• Bingo! Working in matter-dominated background case, so aH = 2/η, and can
quickly solve this to get

Φ = −α− β

η5
, where α and β are constants

• Subs. back, this leads to the relatively simple δ solution
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SOLUTION FOR PRESSURELESS CASE

δ = α

(
2 +

(kη)2

6

)
+ β

(
k2

6η3
− 3

η5

)

• So can see the usual behaviour

• Going back to early epochs, if don’t want things to blow up then need to discard the
decaying solutions

• So we deduce Φ is constant for pressureless case in matter domination

• So after recombination, this is what actual gravitational potentials do (up to point
where assuming Einstein de Sitter no longer appropriate — i.e. Φ starts to evolve
once late time effects from Λ start kicking in)

• Meanwhile, solution for density contrast

δ = α

(
2 +

(kη)2

6

)
also displays expected features
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SOLUTION FOR PRESSURELESS CASE

• On large scales (small k) it is constant, corresponding to the fluctuations being
frozen on super-horizon scales, and for small scales δ ∝ η2 ∝ t2/3 ∝ a, which is
the expected Newtonian result

• Could say transition between two regimes takes place where second term is (say)
1/3 of first

• So kη > 2 and η = 2/(aH) gives k > aH — expected horizon crossing criterion

• How do we fix the constant α?

• This comes from the primordial perturbations on large scales

• We assume these are adiabatic

• Basically says that the density contrast in each species (CDM, photons, baryons,
neutrinos, etc.) is a fixed function of the overall, total density perturbation δ

• The fractions work out as
1

3
δB =

1

3
δc =

1

4
δγ =

1

4
δν
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• This is straightforward (just going with relativistic vs. non-relativistic components)

• The subtle bit is how this relates to the curvature perturbations ζ which are
produced by inflation

• Lyth & Liddle discuss this in detail (see their Chap. 5) and find that the gauge
invariant definition of ζ corresponds to (with our metric)

ζ = −Φ +
1

3

δρ

ρ+ P

where δρ is the total density perturbation

• Won’t go through the details, but can then show from the equations we’ve already
got (evaluated in small k case) that on superhorizon scales we get

Φ = ψ = −3 + 5w

5 + 3w
ζ, δ = −2Φ

• ζ itself remains constant on superhorizon scales all the way since it was generated
at inflation

• So for scales entering the horizon during radiation/matter domination the
appropriate initial conditions are

Φ = −2

3
ζ, δ =

4

3
ζ radiation dom. Φ = −3

5
ζ, δ =

6

5
ζ matter dom.



THE PHOTON/BARYON FLUID

• So we have got ourselves initial conditions

• Time now to face up to the bit involving pressure, i.e. the coupled photon/baryon
fluid

• This is quite a bit more complicated, but not impossible, and we follow same route
as before in terms of getting a single second order equation

• Remind ourselves of the equations for δγ:

δ̇γ = −4

3
kVγ + 4Φ̇

• and

V̇γ = −aH(1− 3weff)Vγ −
ẇeff

1 + weff
+
k

3

ργ

ρB + ργ
δγ + kΨ

where the effective equation of state is

weff =
Pγ

(ργ + ρB)
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THE PHOTON/BARYON FLUID

• This time we leave Φ̇ alone, since this belongs to the total fluid, not just radiation,
and solve the first (continuity) equation for Vγ, and substitute this into the Euler
equation

• We get (8.57 in Liddle & Lyth, with a few misprints corrected)

1

4
δ̈ +

1

4

Ṙ

1 +R
δ̇ +

1

4
k2c2sδ = F (η)

where the driving term F (η) is given by

F (η) = −k
2

3
Ψ +

Ṙ

1 +R
Φ̇ + Φ̈

and

c2s =
P

ρ
≈ Pγ

ργ + ρB
=

1

3(1 +R(η))
= squared sound speed

and R ≡ 3ρB/(4ργ) is conventional symbol for a quantity that will vary with epoch
∝ a(η), and therefore Ṙ ∝ RH, i.e. can see second terms correspond to Hubble
drag
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THE PHOTON/BARYON FLUID

• So have a damped, forced, harmonic oscillator

• The forcing term itself will oscillate, due to the Ψ and Φ potentials responding to
the oscillations of the photon/baryon fluid, and we can attempt a WKB solution in
terms of the slowly varying frequency kcs(η)

• We find
1

4
δγ(η) = A(η) +B(η) cos(krs(η)) + C(η) sin(krs(η))

where the coefficients A, B and C are meant to vary only slowly, and rs(η) is
called the sound horizon, and is meant to show the distance a disturbance in the
fluid could have traveled since some early time:

rs(η) =
∫ η

0
cs(η)dη

• Note the non-oscillating part A(η) corresponds to the non-oscillating part of the
driving term coming from Ψ, so can write explicitly

A(η) = −(1 +R(η))Ψ

where the Ψ = Φ at the right is evaluated once potentials constant again
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THE PHOTON/BARYON FLUID

• So here comes an important result. We
know that our initial condition linking δ

and Φ = Ψ at early times is

δ(0) = −2Φ(0)

and that this remains roughly constant
until horizon crossing

• Meanwhile, WKB method tells us η de-
pendence of the coefficients B and C
will be roughly (1 + R)−1/4, and we
know R goes to ∼ 0 at earlier times
(where radiation dominates)

• Also A term just discussed is in fact
quite small for modes that have been
oscillating (see below)

• So we see that it is the cosine
term that is picked out and ex-
cited by the initial conditions

• This is what phases things up

• So we get B ∼ δ(0) ∼ 1
3ζ,

C = 0
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THE RESULTS

• δγ/4 (≡ Θ0 = ∆T/T ) starts out con-
stant at −Ψ(0)/2 ⇒ cosine oscilla-
tion 1

3ζ cos krs about equilibrium point
−(1 +R)Ψ

• Modes with k
∫ η∗
0 cs dη = nπ are at

extrema at last scattering ⇒ acoustic
peaks in power spectrum

• As soon as decoupling of the pho-
ton/baryon fluid occurs, baryons fall
into the potential wells created by the
CDM
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WHAT DO WE SEE?

• Due to Thomson scattering not changing the electron or photon energy, can use
our previous ‘Liouville’ approach and deduce bb form is maintained, and
temperature shifts gravitationally just come from frequency change

• If write q = ap, where p is photon momentum, then q is constant in unperturbed
universe (this is just standard redshift effect)

• With our Conformal Newtonian Gauge metric, then can show from geodesic
equations

1

q

dq

dη
=
∂Φ

∂η
+
∂Ψ

∂η
− dΨ

dη

where dΨ/dη means a derivative along the photon path

• Then
1

q

dq

dη
=

1

T

dT

dη

tells us last term on right gives additional redshift, hence ∆T/T , due to
differences in potential Ψ between last scattering point and reception
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• Negative contribution to ∆T/T from potential wells (matter over-densities) at last
scattering

• Second term gives integrated Sachs-Wolfe contribution

(∆T/T )ISW =
∫

(Φ̇ + Ψ̇) dη

ANISOTROPY GENERATION: SCATTERING

• Thomson scattering (kBT � mec2) around recombination and reionization
dominant scattering mechanism to affect CMB:

dΘ

dη
= −aneσTΘ︸ ︷︷ ︸

out-scattering
+

3aneσT
16π

∫
dm̂Θ(ε, m̂)[1 + (e · m̂)2]︸ ︷︷ ︸

in-scattering

+aneσTe · vb︸ ︷︷ ︸
Doppler

• Neglecting anisotropic nature of Thomson scattering,

dΘ

dη
≈ −aneσT (Θ−Θ0 − e · vb)

so scattering tends to isotropise in rest-frame of electrons: Θ→ Θ0 + e · vb
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• Doppler effect arises from electron bulk velocity vb

– Enhances ∆T/T for vb towards observer

– Linear effect only important from recombination; non-linear effects from
reionization avoid peak-trough cancellation

TEMPERATURE ANISOTROPIES

• On degree scales, scattering time short c.f. wavelength of fluctuations and (local!)
temperature is uniform plus dipole: Θ0 + e · vb
• Observed temperature anisotropy is snapshot of this at last scattering but modified

by gravity:

[Θ(n̂) + ψ]R = Θ0|E︸ ︷︷ ︸
temp.

+ ψ|E︸︷︷︸
gravity

+ e · vb|E︸ ︷︷ ︸
Doppler

+
∫ R
E

(ψ̇ + φ̇) dη︸ ︷︷ ︸
ISW

with line of sight n̂ = −e, and Θ0 isotropic part of Θ

– Ignores anisotropic scattering, finite width of visibility function (i.e.
last-scattering surface) and reionization

∗ Will fix these omissions shortly



ACOUSTIC OSCILLATIONS: ADIABATIC MODELS

• So (ignoring ISW part for the moment) sensible to look at time development of
separate contributions from δ

4 + Ψ and velocity

– As we’ve said, modes with k
∫ η∗
0 cs dη = nπ are at extrema at last scattering⇒

acoustic peaks in power spectrum

– Vb ≈ Vγ is π/2 out of phase with Θ0, as follows from continuity equation (the i
that entered in Fourier description) so Doppler effect ‘fills in’ zeroes of Θ0 + ψ
and can predict ‘Doppler peaks’ will be π/2 out of phase
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SPATIAL-TO-ANGULAR PROJECTION

• Consider angular projection at origin of potential Ψ(x, η∗) over last-scattering
surface; for a single Fourier component

Ψ(n̂) = Ψ(n̂∆η, η∗) ∆η ≡ η0 − η∗
= Ψ(k, η∗)

∑
lm

4πiljl(k∆η)Ylm(n̂)Y ∗lm(k̂)

Ψlm ∼ 4πΨ(k, η∗)iljl(k∆η)Y ∗lm(k̂)

• jl(k∆η) peaks when k∆η ≈ l but for given l considerable power from k > l/∆η
also (wavefronts perpendicular to line of sight)

k k∆η= l

k∆η> l

– CMB anisotropies at multipole l mostly sourced from fluctuations with linear
wavenumber k ∼ l/∆η where conformal distance to last scattering ≈ 14 Gpc
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ADIABATIC ANISOTROPY POWER SPECTRUM

• Temperature power spectrum for scale-invariant curvature fluctuations
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COMPLICATIONS: PHOTON DIFFUSION

• Photons diffuse out of dense regions damping inhomogeneities in Θ0 (and
creating higher moments of Θ)

– In time dη, when mean-free path ` = (aneσT )−1 = 1/|τ̇ |, photon random
walks mean square distance `dη

– Defines a diffusion length by last scattering:

k−2
D ∼

∫ η∗
0
|τ̇ |−1dη ≈ 0.2(Ωmh

2)−1/2(Ωbh
2)−1(a/a∗)5/2 Mpc2

• Get exponential suppression of
photons (and baryons)

Θ0 ∝ e−k
2/k2

D cos krs

on scales below ∼ 30 Mpc at last
scattering

– Implies e−2l2/l2D damping tail in
power spectrum

– Additionally, get extra damping
due to finite width σz = 80 of
last scattering surface 53



ACTUAL DAMPING TAIL OBSERVATIONS
ACT 2008 Parameters 7

Fig. 2.— The angular power spectrum measured by ACT at 148GHz and 218GHz (Das et al. 2010), with the theoretical model for
CMB, SZ, and point sources best-fit to the three spectra. The lensed CMB corresponds to the ΛCDM model with parameters derived from
WMAP (Komatsu et al. 2010). It dominates at large scales, but falls exponentially due to Silk damping. The majority of power at ℓ > 3000
comes from extragalactic point sources below a ≈20 mJy flux cut after masking. The radio sources are sub-dominant, and are constrained
by a source model fit to detected sources at 148GHz (Marriage et al. 2010b). The infrared source emission, assumed to follow a power
law, is dominated by Poisson power at small scale, but about 1/3 of the IR power at ℓ = 3000 is attributed to clustered source emission,
assuming a template described in the text. The best-fit SZ (thermal and kinetic) contribution at 148GHz (assuming the TBO-1 template,
Sehgal et al. (2010a)) is 7µK2 at ℓ = 3000; the subdominant kinetic SZ also contributes at 218GHz. The data spectra and errors have
been scaled by best-fit calibration factors of 1.022, 1.02 × 1.09 and 1.092 for the 148 × 148, 148 × 218, and 218× 218 spectra respectively.

nt = −r/8, and both the index and ratio are defined as in
e.g., Komatsu et al. (2009). The CMB power spectrum
from cosmic strings is expected to scale as (Gµ)2, so we
follow Sievers et al. (2009) and Battye & Moss (2010)
by parameterizing the string power using qstr ∝ (Gµ)2.
Limits on Gµ are then derived from qstr.
We generate the lensed theoretical CMB spectra using

CAMB3, and for computational efficiency set the CMB
to zero above ℓ = 4000 where the contribution is sub-
dominant, less than 5% of the total power. To use the
148-only ACT likelihood there are three secondary pa-
rameters, ASZ, Ap, and Ac. For this part of the analysis
we use the TBO-1 and Src-1 SZ and clustered source
templates, checking the effect on the primary parame-
ters of substituting alternative templates. We also im-
pose positivity priors on these parameters. We do not
use any information explicitly from the 218GHz spec-
trum in this part of the analysis, using just the 148-
only likelihood, although results are checked using the
148+218 likelihood. The ACT likelihood is combined
with the seven-year WMAP data and other cosmological
data sets. We use the MCMC code and methodology
described in Appendix C of Dunkley et al. (2009), with
the convergence test described in Dunkley et al. (2005).
A subset of results are cross-checked against the publicly

3 Version Feb 2010, with Recfast 1.5.

available CosmoMC code.
To place constraints on cosmological parameters we use

the 7-year WMAP data in combination with ACT, using
the WMAP likelihood package v4.1 described in Larson
et al. (2010). WMAPmeasures the CMB over the full sky
to 0.2◦ scales. All WMAP-only results shown for com-
parison use MCMC chains from LAMBDA4, described
in Larson et al. (2010). We follow the methodology
described in Komatsu et al. (2010) to consider the ad-
dition of distance measurements from astrophysical ob-
servations, on the angular diameter distances measured
from Baryon Acoustic Oscillations (BAO) at z = 0.2 and
0.35, and on the Hubble constant. The Gaussian priors
on the distance ratios, rs/DV (z = 0.2) = 0.1905±0.0061
and rs/DV (z = 0.35) = 0.1097±0.0036, are derived from
measurements from the Two-Degree Field Galaxy Red-
shift Survey (2dFGRS) and the Sloan Digital Sky Survey
Data Release 7 (SDSS DR7), using a combined analysis
of the two data-sets by Percival et al. (2010). The param-
eter rs is the comoving sound horizon size at the baryon
drag epoch, and DV (z) ≡ [(1 + z)2D2

A(z)cz/H(z)]1/3

is the effective distance measure for angular diameter
distance DA, and Hubble parameter H(z). The in-
verse covariance matrix is given by Eq. 5 of Percival
et al. (2010). The Gaussian prior on the Hubble con-

4 http://lambda.gsfc.nasa.gov/

ACT results from Dunkley et al., astro-ph:1009.0866

Notice how SZ effect contributions peak as primordial anisotropies are being strongly
damped — mass scale 1014 to 1015M� of clusters corresponds to width of l.s.s.
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INTEGRATED SACHS-WOLFE EFFECT

• Linear ΘISW ≡
∫

(Φ̇ + Ψ̇) dη from late-time dark-energy domination and residual
radiation at η∗; non-linear small-scale effect from collapsing structures

– In adiabatic models early ISW adds coherently with SW at first peak

– Late-time effect is large scale (integrated effect⇒ peak–trough cancellation
suppresses small scales)

– Late-time effect in dark-energy models produces positive correlation between
large-scale CMB and LSS tracers for z < 2
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REIONIZATION

• CMB re-scatters off re-ionized gas; ignoring anisotropic (Doppler and quadrupole)
scattering terms, locally at reionization have

Θ(e) + ψ → e−τ [Θ(e) + ψ] + (1− e−τ)(Θ0 + ψ)

– Outside horizon at reionization, Θ(e) ≈ Θ0 and scattering has no effect

– Well inside horizon, Θ0 + ψ ≈ 0 and observed anisotropies

Θ(n̂)→ e−τΘ(n̂) ⇒ Cl → e−2τCl
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ISOCURVATURE MODES

• So far have said the density contrast in each species (CDM, photons, baryons,
neutrinos, etc.) is a fixed function of the overall, total density perturbation δ

• This is the adiabatic condition and the fractions are
1

3
δB =

1

3
δc =

1

4
δγ =

1

4
δν

• But don’t have to assume this. Can decompose into normal modes, and there are 3
extra ones of these where we vary each of δc, δB and δν separately from the
radiation

• CDM isocurvature perhaps most physically motivated (perturb CDM relative to
everything else)

• Starts off with δγ(0) = φ(0) = 0 so matches onto sin krs modes
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Temperature power spectrum for entropy fluctuations (CDM isocurvature mode)

So these can’t be dominant, but certainly interesting to set limits on contribution.
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