

"Tell me that you have found no sign of New Physics again, I dare you. I double dare you. Tell me one more goddamn time!"

Sheldon: "Research Lab" is more than a game: The physics is theoretical, but the fun is real!

The Standard Model of Particle Physics (and an Important Alternative)

Sven Heinemeyer, IFCA (CSIC, Santander)

St. Cruz de La Palma, 07/2012

- 1. The Standard Model and the Higgs boson
- 2. The Standard Model and the LHC
- 3. Supersymmetry and the cosmic connection
- 4. SUSY Higgs bosons and the LHC

1. The Standard Model and the Higgs boson

Current status of knowledge: the Standard Model (SM)

- 1. family: quarks: d, u leptons: e^-, ν_e (neutrino)
- 2. family: quarks: s, c leptons: μ^-, ν_{μ} (neutrino)
- 3. family: quarks: b, t leptons: τ^-, ν_{τ} (neutrino)

In total:

6 quarks and 6 leptons

The heavier particles (2. and 3. family) decay in very short time into the lighter particles (1. family) Example:

$$\mu^- \rightarrow e^- + \overline{
u}_e +
u_\mu$$

Forces and force particles (I):

1. electromagnetic force: photon: γ

2. weak force: W^+, W^-, Z^0

3. strong force: gluon: g

4. gravitational force: graviton(?)

"Nothing yet. ... How about you, Newton?"

SM: Quantum field theory \Rightarrow interaction: exchange of field quanta

Construction principle of the SM: gauge invariance

Example: Quantum electro-dynamics (QED) field quanta: photon A_{μ}

 \mathcal{L}_{QED} invariant under gauge transformation:

 $\Psi \to e^{i e \lambda(x)} \Psi, \ A_{\mu} \to A_{\mu} + \partial_{\mu} \lambda(x)$

mass term for photon: $m^2 A^{\mu} A_{\mu}$ not gauge invariant $\Rightarrow A_{\mu}$ is massless gauge field

 \Rightarrow all particles experimentally seen

 \Rightarrow all particles experimentally seen

 \Rightarrow but it predicts massless gauge bosons . . .

Problem:

Gauge fields Z, W^+ , W^- are massive

explicite mass terms in the Lagrangian \Leftrightarrow breaking of gauge invariance

Solution: Higgs mechanism

scalar field postulated, mass terms from coupling to Higgs field

Higgs sector in the Standard Model:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix} \quad (unitary gauge)$$

H: elementary scalar field, <u>Higgs boson</u>

Lagrange density:

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - g_d \bar{Q}_L \Phi d_R - g_u \bar{Q}_L \Phi_c u_R - V(\Phi)$$

with

$$iD_{\mu} = i\partial_{\mu} - g_{2}\vec{I}\vec{W}_{\mu} - g_{1}YB_{\mu}$$

$$\Phi_{c} = i\sigma_{2}\Phi^{*} \qquad Q_{L} \sim \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}, \ \Phi \sim \begin{pmatrix} 0 \\ v \end{pmatrix}, \ \Phi_{c} \sim \begin{pmatrix} v \\ 0 \end{pmatrix}$$

Gauge invariant coupling to gauge fields

 \Rightarrow mass terms for gauge bosons and fermions

$$V \longrightarrow \cdots + \cdots$$

$$\frac{1}{q^2} \to \frac{1}{q^2} + \sum_j \frac{1}{q^2} \left[\left(\frac{gv}{\sqrt{2}} \right)^2 \frac{1}{q^2} \right]^j = \frac{1}{q^2 - M^2} : M^2 = g^2 \frac{v^2}{2} \quad \Rightarrow M \propto g$$

2.) fermion mass terms: Yukawa couplings:

3.) mass of the Higgs boson: self coupling

 $\lambda = M_H^2 / v$

 \rightarrow last unknown(??) parameter of the SM

3.) mass of the Higgs boson: self coupling

 \Rightarrow establish Higgs mechanism \equiv find the Higgs \oplus measure its couplings

Another effect of the Higgs field:

Scattering of longitudinal W bosons: $W_L W_L \rightarrow W_L W_L$

 \Rightarrow violation of unitarity

Contribution of a scalar particle with couplings prop. to the mass:

 \Rightarrow compensation of terms with bad high-energy behavior for

 $g_{WWH} = g M_W$

What else do we know about the Higgs boson?

Renormalization group equation:

$$\frac{d\lambda}{dt} = \frac{3}{8\pi^2} \left[\lambda^2 + \lambda g_t^2 - g_t^4 + \frac{1}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] , \quad t = \log\left(\frac{Q^2}{v^2}\right)$$

Two conditions:

- 1.) avoid Landau pole (for large $\lambda \sim M_H^2$)
- 2.) avoid vacuum instability (for small/negative λ)

1.) avoid Landau pole (for large $\lambda \sim M_H^2$)

$$\frac{d\lambda}{dt} = \frac{3}{8\pi^2} \left[\lambda^2\right]$$

$$\Rightarrow \quad \lambda(Q^2) = \frac{\lambda(v^2)}{1 - \frac{3\lambda(v^2)}{8\pi^2} \log\left(\frac{Q^2}{v^2}\right)}$$

$$\lambda(\Lambda) < \infty \Rightarrow M_H^2 \le \frac{8 \pi^2 v^2}{3 \log\left(\frac{\Lambda^2}{v^2}\right)}$$
 : upper bound on M_H

2.) avoid vacuum instability (for small/negative λ): $V(v) < V(0) \Rightarrow \lambda(\Lambda) > 0$

$$\begin{aligned} \frac{d\,\lambda}{d\,t} &= \frac{3}{8\,\pi^2} \left[-g_t^4 + \frac{1}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] \\ \Rightarrow \quad \lambda(Q^2) &= \lambda(v^2) \frac{3}{8\,\pi^2} \left[-g_t^4 + \frac{1}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] \log\left(\frac{Q^2}{v^2}\right) \\ \Lambda(\Lambda) > 0 \;\Rightarrow\; M_H^2 > \frac{v^2}{4\,\pi^2} \left[-g_t^4 + \frac{1}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] \log\left(\frac{\Lambda^2}{v^2}\right) : \text{ lower bound} \end{aligned}$$

Both limits combined:

 $\Lambda = M_{\rm GUT} \Rightarrow$ 130 GeV $\lesssim M_H \lesssim$ 180 GeV

 $[\]Lambda:$ scale up to which the SM is valid

Electroweak Precision Observables (EWPO):

Comparison of electro-weak precision observables with theory:

Test of theory at quantum level: Sensitivity to loop corrections, e.g. ${\cal H}$

SM: limits on M_H

Very high accuracy of measurements and theoretical predictions needed

Example: prediction of M_W , $\sin^2 \theta_{eff}$

A) Theoretical prediction for M_W in terms

Evaluate Δr from μ decay $\Rightarrow M_W$

One-loop result for M_W in the SM: [A. Sirlin '80], [W. Marciano, A. Sirlin '80]

$$\Delta r_{1-\text{loop}} = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho + \Delta r_{\text{rem}}(M_H)$$
$$\sim \log \frac{M_Z}{m_f} \sim m_t^2 - \log (M_H/M_W)$$
$$\sim 6\% \sim 3.3\% \sim 1\%$$

Example: prediction of M_W , $\sin^2 \theta_{eff}$

A) Theoretical prediction for M_W in terms

B) Effective mixing angle:

$$\sin^2 heta_{ ext{eff}} = rac{1}{4 \left| Q_f
ight|} \left(1 - rac{\operatorname{Re} g_V^f}{\operatorname{Re} g_A^f}
ight)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

Comparison of SM prediction of M_W with direct measurements:

Results for M_H from other EWPO:

light Higgs preferred by: M_W , A_l^{LR} (SLD)

heavier Higgs preferred by: A_{b}^{FB} (LEP) \Rightarrow keeps SM alive

\Rightarrow light Higgs boson preferred

[LEPEWWG '11]

Global fit to all SM data: [*LEPEWWG* '12]

 $\Rightarrow M_H = 94^{+29}_{-24} \text{ GeV}$

 $M_H < 152 \text{ GeV}, 95\%$ C.L.

Assumption for the fit: SM incl. Higgs boson

 \Rightarrow no confirmation of Higgs mechanism

 \Rightarrow Higgs boson seems to be light, $M_{H} \lesssim 160~{\rm GeV}$

Another EWPO: the anomalous magnetic moment of the muon

 $a_\mu \equiv (g-2)_\mu/2$

Overview about the current experimental and SM (theory) result:

[M. Davier, A. Hoecker, B. Malaescu, Z. Zhang '10]

Sven Heinemeyer, ISAPP (La Palma), 18.-20.07.2012

 $\rightarrow T$

The $(g-2)_{\mu}$ experiment:

Coupling of muon to magnetic field : $\mu - \mu - \gamma$ coupling

$$\bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i}{2m_{\mu}} \sigma^{\mu\nu} q_{\nu} F_2(q^2) \right] u(p) A_{\mu} \qquad F_2(0) = a_{\mu}$$

Current status of $(g-2)_{\mu}$:

Experiment:

- 2001 2006: very stable development
- final error: 6×10^{-10} , still statistically dominated

new SM evaluations, based on new exp e^+e^- data for a_{μ}^{had} :

$$a_{\mu}(\mathsf{Exp}\mathsf{-SM}) = \begin{cases} [\mathsf{HMNT'06}] & 28(8) \\ [\mathsf{DEHZ'06}] & 28(8) \\ [\mathsf{FJ'07}] & 29(9) \\ [\mathsf{MRR'07}] & 29(9) \\ [\mathsf{DH'10}] & 28.7(8.0) \end{cases} \times 10^{-10}$$

better agreement between evaluations, more precise, larger deviation from exp than ever before \downarrow 3σ deviation has now been definitely established (based on e^+e^- data)

New development for τ data:

```
[F. Jegerlehner, R. Szafron '11]
```

Re-evaluation of τ data: improved evaluation of $\rho - \gamma$ mixing \Rightarrow shift in τ data:

Now: agreement with e^+e^- data! \Rightarrow still tbc!

If correct: \Rightarrow new average of all data possible . . .

New development for τ data:

```
[F. Jegerlehner, R. Szafron '11]
```

Re-evaluation of τ data: improved evaluation of $\rho - \gamma$ mixing \Rightarrow shift in τ data:

Now: agreement with e^+e^- data! \Rightarrow still tbc!

If correct: \Rightarrow new average of all data possible . . .

New physics needed to explain this discrepancy?

Restrictions on M_H from a_{μ} ?

 \Rightarrow Higgs enters only at the two-loop level Example for M_H dependence:

[S.H., D. Stöckinger, G. Weiglein '04]

 \Rightarrow no restrictions on M_H (but just wait a bit . . . :-)

Back to the Higgs:

Back to the Higgs: Properties of the SM Higgs boson

1.) Decay to fermions:

coupling:

$$g_{f\bar{f}H} = \left[\sqrt{2}\,G_{\mu}\right]^{1/2}m_f$$

decay width:

$$\Gamma(H \to f\bar{f}) = N_c \frac{G_{\mu} M_H}{4\sqrt{2}\pi} m_f^2(M_H^2) \left(1 - 4\frac{m_f^2}{M_H^2}\right)^{3/2}$$

with N_c = number of colors

Bulk of QCD corrections for decays to quarks are mapped into

$$m_q^2(\text{pole}) \rightarrow m_q^2(M_H^2)$$

Dominant decay process: $H \rightarrow b\overline{b}$

2.) Decay to heavy gauge bosons (V = W, Z):

coupling:

$$g_{VVH} = 2 \left[\sqrt{2} \, G_{\mu}\right]^{1/2} M_V^2$$

on-shell decay width $(M_H > 2M_V)$:

$$\Gamma(H \to VV) = \delta_V \frac{G_\mu M_H^3}{16\sqrt{2}\pi} \left(1 - 4\frac{M_V^2}{M_H^2} + 12\frac{M_V^4}{M_H^4}\right) \ \left(1 - 4\frac{M_V^2}{M_H^2}\right)^{1/2}$$
 with $\delta_{W,Z} = 2, 1$

off-shell decay width $(M_H < 2M_V)$:

$$\Gamma(H \to VV^*) = \delta'_V \frac{3G_\mu^2 M_H}{16 \,\pi^3} M_V^4 \times \text{Integral}$$

3.) Decay to massless gauge bosons (gg, $\gamma\gamma$):

via the top quark loop with

$$C = \frac{215}{12} - \frac{23}{6} \log\left(\frac{\mu^2}{M_H^2}\right) + \mathcal{O}(\alpha_s)$$

 \Rightarrow huge QCD corrections

$$\Gamma(H \to \gamma \gamma) = \frac{G_{\mu} \alpha^2 M_H^3}{128 \sqrt{2} \pi^3} \Big| \frac{4}{3} e_t^2 - 7 \Big|^2$$

via the top quark and W boson loop

Latest theory predictions for the SM Higgs: LHC production XS [LHC Higgs XS WG '10]

Latest theory predictions for the SM Higgs: branching ratios [LHC Higgs XS WG '10]

1. Find the new particle

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, ...

- 1. Find the new particle T
- 2. measure its mass $(\Rightarrow ok?)$ T
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, ...

T = Tevatron,

1. Find the new particle	Т	L
2. measure its mass (\Rightarrow ok?)	Т	L
3. measure coupling to gauge bosons		L
4. measure couplings to fermions		L
5. measure self-couplings		
6. measure spin,		

T = Tevatron, L = LHC,

1. Find the new particle	Т	L	Ι	
2. measure its mass (\Rightarrow ok?)	Т	L	Ι	
3. measure coupling to gauge bosons		L	Ι	
4. measure couplings to fermions		L	Ι	
5. measure self-couplings			Ι	
6. measure spin,		L	Ι	

T = Tevatron, L = LHC, I = ILC

We need the ILC to find the Higgs and to establish the Higgs mechanism! But the LHC can do a crucial part already!

Linear e^+e^- collider, $\sqrt{s} = 500 - 1000$ GeV

based on superconducting cavities (cold technology) (ITRP decision 2004)

- two detectors in one interaction region (push-pull)
- undulator based e^+ source
- polarized beams for e^- and e^+ ($P_{e^-} = 80\%$, $P_{e^+} = 60\%$)
- \Rightarrow clearly defined and tunable innitial state \Rightarrow extremely "clean" physics

2. The Standard Model and the LHC

What can we learn from exploring the new territory of TeV-scale physics?

- How do elementary particles obtain the property of mass: what is the mechanism of electroweak symmetry breaking?
- Do all the forces of nature arise from a single fundamental interaction?
- Are there more than three dimensions of space?
- Are space and time embedded into a "superspace"?
- Can dark matter be produced in the laboratory?

 \Rightarrow so we set out and built the LHC!

. . .

LHC:

p p collisions at $\sqrt{s} = 7, 8, 14$ TeV

- 27 km circumfence
- two general purpose detectors:
 ATLAS and CMS
- one B physics detector: LHCb
- one heavy ion detector: Alice

LHC overview:

CERN TH institute 02/09: LHC2FC: From the LHC to Future Colliders

Standard Model has been rediscovered!

Standard Model has been rediscovered!

No evidence for new physics - yet!

Standard Model has been rediscovered!

No evidence for new physics - yet!

... most probably with one exception in the Higgs searches!

Physics at the LHC: basics

$p\,p$ scattering at $\sqrt{s}=$ 14 TeV

Scattering process of proton constituents (q, \bar{q}, g) with energy up to several TeV, strongly interacting

⇒ huge QCD backgrounds, low signal-to-background ratios

interaction rate of 10^9 events/s

 \Rightarrow can trigger on only

1 event in 10^7

How to calculate cross sections at the LHC?

First step:

Calculate cross section for incoming partons and outgoing X:

 $\hat{\sigma}(ij \to X), \ i, j = q, \bar{q}, g$

Perturbative calculation is possible:

- α_s is sufficiently small at LHC energies
- $-\alpha$ is sufficiently small anyway

Still to be done:

- 1. connect incoming quarks and gluons with the (incoming) colliding protons
- 2. connect the outgoing particles with the observed (outgoing) jets

Making the connections:

1. To connect protons with quarks an gluons we need to know the probability that a quark or gluon is carrying a certain fraction x of the proton momentum,

provided by parton distribution functions (PDFs):

 $f_i(x,\mu_f)$

 μ_f : factorization scale

 at lowest order: each outgoing quark or gluon is identified with a hadronic jet – provided they are well separated in pseudo-rapidity – azimuth space:

$$\Delta R := \left(\Delta \eta^2 + \Delta \Phi^2\right)^{-1/2} > R_{\min}$$

Φ: angle in plane perpendicular to beam axis η : pseudo rapidity: $\eta = -\log(\tan \theta/2)$

The Master formula for all LHC cross section calculations:

$$\sigma(pp \to X) = \sum_{ij} \int dx_1 dx_2 f_i(x_1, \mu_f) f_j(x_2, \mu_f) \,\hat{\sigma}(ij \to X)$$

 $x_{1,2}$: momentum fraction carried by the incoming quarks, gluons $\hat{\sigma}$: partonic cross section, calculated perturbatively

Parton Density Functions (PDFs):

- PDFs cannot be calculated perturbatively
 - \Rightarrow they have to be measured experimentally (at a certain scale)
- QCD predicts the evolution of the PDFs via the Altarelli-Parisi equations,

i.e. once we know the PDFs for a certain scale, QCD predicts them for all other scales

- PDFs are universal, e.g. PDFs determined at HERA can directly be used for LHC calculations
- PDFs are different for valence and sea quarks
- PDFs come in the form of Fortran codes, mainly by two groups: MRST and CTEQ collaborations

Example for PDFs of the proton:

\Rightarrow The LHC is (mainly) a gluon gluon collider

Uncertainties in cross section calculations

induced by uncertainties in PDFs:

Final state X with mass M_X :

PDF induced uncertainties mostly below 5%

[MRST, CTEQ, Alekhin, ...]

Generic QCD cross sections (I):

- focus on pure QCD cross section for the moment, but electroweak or mixed QCD/electroweak cross sections go analogous
- calculate $\hat{\sigma}$ as a power series in α_s :

$$\hat{\sigma}(ij \to X) = \alpha_s^k(\mu_r) \sum_{n=0}^N \alpha_s^n(\mu_r) \hat{\sigma}_n(ij \to X)$$

- μ_r : renormalization scale
- k: depends on the (number of legs of the) final state
- if one could do an all order calculation $(N \to \infty)$ the cross section σ would be independent of μ_f and μ_r
- n = 0: leading order (LO) n = 1: next-to-leading order (NLO)

. . .

- Understanding physics discoveries at the LHC requires accurate SM predictions ...
 - ... this can be difficult
- We need precise (QCD) calculations ,

together with Monte Carlo techniques to connect to the real world (jets etc.)

- LO cross sections suffer from large uncertainties caused by the dependencies on μ_r and μ_f , especially for processes with many particles in the final state
- Including higher-order (NLO, NNLO, ...) QCD corrections reduces the scale dependencies of the cross sections

 $\hat{\sigma}_{\rm NLO} \propto {\rm phasespace} \times {\rm |amplitude}_{\rm NLO}|^2$

Calculation of σ_{NLO} involves:

- virtual (loop) diagrams
- real (tree-level) contributions
- cancellation of ultraviolet and infrared divergencies

$$\hat{\sigma}_{\text{NLO}} = \hat{\sigma}_{\text{LO}} + \frac{\alpha_s(\mu_r)}{4\pi} \,\delta\hat{\sigma}_{\text{NLO}}$$

Contributions to $\delta \hat{\sigma}_{NLO}$:

- 1-loop virtual corrections
- real gluon and quark emissions (new parton subprocesses may contribute!)
- PDFs including NLO corrections

Example: W + X production at the LHC:

[C. Anastasiou, L. Dixon, K. Melnikov, F. Petriello '03]

Nature is more complicated than NLO

Nature is more complicated than NLO

• NLO amplitudes are not sufficient:

- only one additional parton with respect to LO, we need more
- large logarithms (soft, Sudakov, ...) appear
 - \Rightarrow have to be resummed
- fixed order calculations do not include hadronization
- Needed: NLO calculations merged into MC codes
 - examples for MC: PYTHIA, HERWIG, SHERPA
 - examples for merger: MC@NLO
- complication: additional parton in NLO is also part of normal showering
 ⇒ need to avoid double counting

MC@NLO: $pp \rightarrow t \overline{t}$ at the LHC

[Frixione, Nason, Webber '03]

LHC cross section overview:

A) W boson physics

B) top quark physics

C) jet production

D) *B* physics

E) Higgs searches at the LHC

A) *W* boson physics

W production and decay at the LHC:

 \Rightarrow measurement of M_W and Γ_W

 \Rightarrow precision test of the SM

	now	Tevatron	LHC
δM_W [MeV]	15	15	<u>≥</u> 5
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	16		14-20
$\delta m_t \; [{ m GeV}]$	0.9	0.9	≤ 1.0

 \Rightarrow improvement in indirect M_H determination

 $u(p_u) \overline{d}(p_d) \rightarrow l^+(p_l) \nu_l(p_\nu)$

A little calculation (LO):

$$\overline{\sum} |\mathcal{M}(u\bar{d} \to l^+ \nu_l)|^2 = 16(\sqrt{2}G_{\mu}M_W^2)|V_{ud}|^2 \frac{(p_u \cdot p_l)^2}{((p_u + p_d)^2 - M_W^2)^2 + M_W^2\Gamma_W^2}$$

M_W method I: the p_{Tl} distribution

 \Rightarrow

 \Rightarrow

 \Rightarrow

 Θ^* : polar angle of l^+ in the W^+ rest frame

$$(p_u \cdot p_l)^2 = \frac{M_W^2}{16} (1 + \cos^2 \Theta^*)$$
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos \Theta^*} = \frac{3}{8} (1 + \cos^2 \Theta^*)$$

If the W has zero transverse momentum the polar angle is given in terms of the lepton transverse momentum: p_{Tl} :

$$\cos\Theta^* = \sqrt{1 - 4p_{Tl}^2/M_W^2}$$

$$\frac{1}{\sigma} \frac{d\sigma}{dp_{Tl}^2} = \frac{3}{M_W^2} \frac{1 - 2p_{Tl}^2/M_W^2}{\sqrt{1 - 4p_{Tl}^2/M_W^2}}$$

 \Rightarrow the p_{Tl} distribution is strongly peaked at $M_W/2$ (Jacobian peak)

However:

The peak is smeared out by the finite W width and non-zero W transverse momentum. However:

The peak is smeared out by the finite W width and non-zero W transverse momentum.

 M_W method II: the M_T distribution

Therefore one often uses the transverse mass

$$M_T^2 = 2|p_{Tl}| |p_{T\nu}| (1 - \cos \Delta \phi_{l\nu})$$

which is less sensitive to the W transverse momentum.

At LO one has

$$|p_{Tl}| = |p_{T\nu}|, \ \Delta \phi_{l\nu} = \pi \quad \Rightarrow \ M_T = 2|p_{Tl}|$$

 \Rightarrow the M_T distribution has a Jacobian peak at $M_T = M_W$

However:

The peak is smeared out by the finite W width and non-zero W transverse momentum.

 M_W method II: the M_T distribution

Therefore one often uses the transverse mass

$$M_T^2 = 2|p_{Tl}| |p_{T\nu}| (1 - \cos \Delta \phi_{l\nu})$$

which is less sensitive to the \boldsymbol{W} transverse momentum.

At LO one has

$$|p_{Tl}| = |p_{T\nu}|, \ \Delta \phi_{l\nu} = \pi \quad \Rightarrow \ M_T = 2|p_{Tl}|$$

 \Rightarrow the M_T distribution has a Jacobian peak at $M_T = M_W$

Not taken into account yet:

non-zero W transverse momentum from gluon/quark radiation
detector smearing

• • • •

Expectations at the LHC:

effects of detector smearing:

statistical uncertainty: $\delta M_W \lesssim 2~{\rm MeV}$ for $\int {\cal L} = 10\,{\rm fb}^{-1}$

overall uncertainty: $\delta M_W \lesssim {\rm 20~MeV}$

possible if lepton energy and momentum scale are know to 0.02%

B) top quark physics

Top-quark mass is a fundamental parameter of the electroweak theory

By far the largest quark mass, largest mass of all known fundamental particles

Window to new physics?

Large coupling to the Higgs boson; physics of flavor; prediction of m_t from underlying theory?

Radiative corrections

- \Rightarrow non-decoupling effects proportional to powers of m_t
- \Rightarrow Need to know m_t very precisely in order to have sensitivity to effects of new physics

EWSB: just a heavy quark? special role for t in EWSB? strong constraint on any model

Precision physics:

 δm_t^{\exp} leading parametric uncertainty \rightarrow could obscure new physics

SUSY: m_t crucial input parameter drives SSB/unification

Little Higgs: heavier top

What can be done at the LHC?

Particle masses are not observables one can only measure cross sections, decay rates, . . .

Additional problem for the top mass:

what is the mass of a colored object?

Top pole mass is not IR safe (affected by large long-distance contributions), cannot be determined to better than $O(\Lambda_{QCD})$

Measurement of m_t :

- At Tevatron, LHC: kinematic reconstruction, fit to invariant mass distribution ⇒ "pole" mass
- At the ILC:

mainly from threshold behavior \Rightarrow threshold mass

Top quark production at the LHC:

Top production through quark antiquark annihilation and gluon gluon fusion

Top quark decays (I):

The dominant decay is $t \to W^+b$:

$$\Gamma(t \to W^+ b) = \frac{G_{\mu} m_t^2}{8 \pi \sqrt{2}} |V_{tb}|^2 \left(1 - \frac{M_W^2}{m_t^2} \right) \left(1 - \frac{2M_W^2}{m_t^2} \right) \approx |V_{tb}|^2 \times 1.42 \text{ GeV}$$
Unitarity of CKM matrix: $|V_{tb}|^2 + |V_{cb}|^2 + |V_{ub}|^2 = 1 \Rightarrow |V_{tb}|^2 \approx 1$

$$\Rightarrow \text{ top quark life time } \tau_t \approx 5 \times 10^{-25} \text{ sec}$$

Typical QCD time scale for hadron formation: $\tau_{QCD} \approx 3 \times 10^{-24}$ sec \Rightarrow the top quark decays before it can form bound states

Top quark decays (II):

Signature depends on the *WW* decay modes

\Rightarrow often semi-leptonic channels easiest

Measure the ratio

$$\frac{\mathsf{BR}(t \to W^+ b)}{\mathsf{BR}(t \to W^+ q)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{cb}|^2 + |V_{ub}|^2}$$

If one assumes 3 generations then $|V_{tb}|^2 + |V_{cb}|^2 + |V_{ub}|^2 = 1$

Current Tevatron measurements:

$$|V_{tb}| = \begin{cases} 1.05^{+0.10}_{-0.09} & (CDF) \\ 1.01^{+0.09}_{-0.09} & (D0) \end{cases}$$

However:

assuming three generations we know 0.9990 $< |V_{tb}| <$ 0.9993 anyway from unitarity of the CKM matrix

Measurement of V_{tb} (II):

Cleaner: single top production

	s-channel	t-channel	Wt
$\sigma_t^{\sf NLO}$ [pb]	\sim 7	~ 153	~ 31
$\sigma_{\overline{t}}^{NLO}$ [pb]	\sim 4	~ 90	~ 31

\Rightarrow better prospects, no assumption on unitarity needed

Top quark physics at the LHC:

The top cross section is $\sigma_{tt} \approx 830 \text{ pb}$

One year LHC running at low luminosity, $\sim 10 \, \text{fb}^{-1} \Rightarrow \mathcal{O}(10^7) \text{ top events}$

Physics goals:

- $\delta m_t = 1 \text{ GeV}$ with $\int \mathcal{L} = 100 \text{ fb}^{-1}$
- Observation of single top production, measurement of V_{tb} with $\int \mathcal{L} = 30 \, \text{fb}^{-1}$
- test of quantum numbers
- measurement of rare (BSM) decay modes

M_W and m_t as a test of the SM and SUSY:

Idea: predict M_W as a function of m_t (and other well measured parameters)

Theoretical prediction for M_W in terms of $M_Z, \alpha, G_\mu, \Delta r$:

X: the whole model enters \Rightarrow test of the theory at the quantum level \Rightarrow SM and SUSY give different predictions

Final step: compare with experimental data

Comparison of SM prediction of M_W with direct measurements:

E) Most recent Higgs searches at the LHC

SM Higgs search at the LHC:

Important SM production channel at the LHC:

Important decay for Higgs mass measurement:

Latest CMS results in search for a SM Higgs:

Latest CMS results in search for a SM Higgs:

Latest ATLAS results in search for a SM Higgs in $\gamma\gamma$:

[ATLAS '12]

 \Rightarrow clear excesses for around $M_H \simeq$ 126 GeV

Latest ATLAS results in search for a SM Higgs in $\gamma\gamma$:

[ATLAS '12]

 \Rightarrow clear excesses for around $M_H \simeq 126~{
m GeV}$

 \Rightarrow clear excesses for around $M_H \simeq 125~{
m GeV}$

Latest ATLAS results in search for a SM Higgs in ZZ^* :

[ATLAS '12]

Tevatron Run II Preliminary, L ≤ 10 fb⁻¹

Official combination does not exist :-(

Results for the combination of all experiments:

Official combination does not exist :-(

However: unofficial combination exists ...

Sven Heinemeyer, ISAPP (La Palma), 18.-20.07.2012

Comparison to SM prediction:

 \Rightarrow Observed excess well compatible with SM prediction

LHC

200

\Rightarrow looks well compatible with the SM Higgs!

\Rightarrow looks well compatible with the SM Higgs!

Has the Higgs particle been discovered?

Has the Higgs particle been discovered?

Has the Higgs particle been discovered?

We have

discovered a new particle,

which is compatible with the predictions of the SM Higgs boson

How can we be sure?

⇒ we have to measure all its characteristics

- mass
- couplings to SM particles
- CP, quantum numbers, ...
- \Rightarrow exploit the LHC!

 \Rightarrow move on to the ILC!

3. Supersymmetry and the cosmic connection:

The Standard Model (SM) cannot be the ultimate theory

- The SM does not contain gravity
- Further problems: Hierarchy problem
- And another one: SM does not provide Cold Dark Matter candidate

Up to which energy scale Λ can the SM be valid?

800.0 $- \Lambda < M_{\rm Pl}$: inclusion of gravity effects necessary 600.0 M_H (GeV) – stability of Higgs potential: \Rightarrow 400.0 Landau pole - Hierarchy problem : Higgs mass unstable 200.0 w.r.t. quantum corrections Potential bounded from below $\delta M_H^2 \sim \Lambda^2$ 0.0 └__ 10³ 10^{6} 10^{9} 10¹² 10¹⁵ Λ (GeV)

Mass is what determines the properties of the free propagation of a particle

QM: integration over all possible loop momenta kdimensional analysis:

$$\Sigma_{H}^{f} \sim N_{f} \lambda_{f}^{2} \int d^{4}k \left(\frac{1}{k^{2} - m_{f}^{2}} + \frac{2m_{f}^{2}}{(k^{2} - m_{f}^{2})^{2}} \right)$$

for $\Lambda \to \infty$: $\Sigma_{H}^{f} \sim N_{f} \lambda_{f}^{2} \left(\int \frac{d^{4}k}{k^{2}} + 2m_{f}^{2} \int \frac{dk}{k} \right)$
 $\sim \Lambda^{2} \sim \ln \Lambda$

 \Rightarrow quadratically divergent!

For $\Lambda = M_{\text{Pl}}$:

$$\Sigma_H^f \approx \delta M_H^2 \sim M_{\rm Pl}^2 \implies \delta M_H^2 \approx 10^{30} M_H^2$$
 for $M_H \lesssim 1 \,{\rm TeV}$)

- no additional symmetry for $M_H = 0$
- no protection against large corrections

- ⇒ Hierarchy problem is instability of small Higgs mass to large corrections in a theory with a large mass scale in addition to the weak scale
- E.g.: Grand Unified Theory (GUT): $\delta M_H^2 \approx M_{GUT}^2$

Note however: there is another fine-tuning problem in nature, for which we have no clue so far – cosmological constant

Supersymmetry:

Symmetry between fermions and bosons

$$Q|boson\rangle = |fermion\rangle$$

 $Q|fermion\rangle = |boson\rangle$

Effectively: SM particles have SUSY partners (e.g. $f_{L,R} \rightarrow \tilde{f}_{L,R}$)

SUSY: additional contributions from scalar fields:

for $\Lambda \to \infty$: $\Sigma_{H}^{\tilde{f}} \sim N_{\tilde{f}} \, \lambda_{\tilde{f}}^{2} \, \Lambda^{2}$

 \Rightarrow quadratic divergences cancel for

$$N_{\tilde{f}_L} = N_{\tilde{f}_R} = N_f$$
$$\lambda_{\tilde{f}}^2 = \lambda_f^2$$

complete correction vanishes if furthermore

 $m_{\tilde{f}} = m_f$

Soft SUSY breaking:
$$m_{\tilde{f}}^2 = m_f^2 + \Delta^2$$
, $\lambda_{\tilde{f}}^2 = \lambda_f^2$
 $\Rightarrow \Sigma_H^{f+\tilde{f}} \sim N_f \ \lambda_f^2 \ \Delta^2 + \dots$

 \Rightarrow correction stays acceptably small if mass splitting is of weak scale

 \Rightarrow realized if mass scale of SUSY partners

 $M_{
m SUSY} \lesssim 1\,{
m TeV}$

 \Rightarrow SUSY at TeV scale provides attractive solution of hierarchy problem

Physics beyond the SM:

Interesting (new) physics models :

- 2HDM:
 - two Higgs doublets more natural than one
- MSSM:
 - solves hierarchy problem
 - automatic electroweak symmetry breaking
 - gauge coupling unification
 - cold dark matter candidate

• Little Higgs:

- (partially) solves the hierarchy problem
- cold dark matter candidate
- Extra dimensions:
 - solves the hierarchy problem
 - cold dark matter candidate

• . . .

\Rightarrow pick your favorite model now (I pick the MSSM)

Symmetry between

Bosons \leftrightarrow Fermions

Q |Fermion $angle \rightarrow$ |Bosonangle

Q |Boson $\rangle \rightarrow$ |Fermion \rangle

Simplified examples:

 \Rightarrow each SM multiplet is enlarged to its double size

Unbroken SUSY: All particles in a multiplet have the same mass

Reality: $m_e \neq m_{\tilde{e}} \Rightarrow SUSY$ is broken . . .

... via soft SUSY-breaking terms in the Lagrangian (added by hand) SUSY particles are made heavy: $M_{SUSY} = O(1 \text{ TeV})$

Supersymmetry: Motivation

The SM is in a pretty good shape.

Why MSSM? (Is it worth to double the particle spectrum?)

- 1.) Stability of the Higgs mass against higher-order corr.
- 2.) Unification of gauge couplings: Not possible in the SM, but in the MSSM (although it was not designed for it.)
- 3.) Spontaneous symmetry breaking via Higgs mechanism is automatic in SUSY GUTs
- 4.) SUSY provides CDM candidate5.) ...

Unification of the Coupling Constants in the SM and the minimal MSSM

[Amaldi, de Boer, Fürstenau '92]

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } \frac{1}{2} \\ \begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } 0 \\ g & \underbrace{W^{\pm}, H^{\pm}}_{\tilde{\chi}_{1,2}} & \underbrace{\gamma, Z, H_{1}^{0}, H_{2}^{0}}_{\tilde{\chi}_{1,2,3,4}} & \text{Spin } 1 \text{ / Spin } 0 \\ \end{bmatrix}$$

Enlarged Higgs sector: Two Higgs doublets

Problem in the MSSM: more than 100 free parameters Nobody(?) believes that a model describing nature has so many free parameters! "Hidden sector": \longrightarrow Visible sector:SUSY breakingMSSM

"Gravity-mediated": CMSSM/mSUGRA "Gauge-mediated": GMSB "Anomaly-mediated": AMSB "Gaugino-mediated"

CMSSM/mSUGRA: mediating interactions are gravitational

GMSB: mediating interactions are ordinary electroweak and QCD gauge interactions

AMSB, Gaugino-mediation: SUSY breaking happens on a different brane in a higher-dimensional theory

⇒ all new low-energy parameters expressed through a few GUT scale parameters!

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu$

 $\begin{array}{c} m_0: \text{universal scalar mass parameter} \\ m_{1/2}: \text{universal gaugino mass parameter} \\ A_0: \text{universal trilinear coupling} \\ \tan\beta: \text{ratio of Higgs vacuum expectation values} \\ \text{sign}(\mu): \text{sign of supersymmetric Higgs parameter} \end{array}$

 \Rightarrow particle spectra from renormalization group running to weak scale \Rightarrow Lightest SUSY particle (LSP) is the lightest neutralino \Rightarrow particle spectra from renormalization group running to weak scale

 \Rightarrow one parameter turns negative \Rightarrow Higgs mechanism for free

"Typical" CMSSM scenario

(SPS 1a benchmark scenario):

Strong connection between

all the sectors

GUT based models: 2.) NUHM1: (Non-universal Higgs mass model)

Assumption: no unification of scalar fermion and scalar Higgs parameter at the GUT scale

 \Rightarrow effectively M_A or μ as free parameters at the EW scale

 \Rightarrow besides the CMSSM parameters $$M_A$$ or μ

And there is more: 3.) VCMSSM 4.) mSUGRA 5.) NUHM2

... no time here ...

R parity

Most general gauge-invariant and renormalizable superpotential with chiral superfields of the MSSM:

$$\mathcal{V} = \mathcal{V}_{\text{MSSM}} + \underbrace{\frac{1}{2} \lambda^{ijk} L_i L_j E_k}_{2} + \lambda^{\prime ijk} L_i Q_j D_k + \mu^{\prime i} L_i H_u}_{2} + \underbrace{\frac{1}{2} \lambda^{\prime \prime ijk} U_i D_j D_k}_{2}$$

violate lepton number violates baryon number

If both lepton and baryon number are violated

 \Rightarrow rapid proton decay

Minimal choice (MSSM) contains only terms in the Lagrangian with even number of SUSY particles

 \Rightarrow additional symmetry: "R parity"

 \Rightarrow all SM particles have even R parity, all SUSY particles have odd R parity

$\mathsf{R}\text{-parity} \Rightarrow \mathsf{the} \ \mathsf{LSP}$

MSSM has further symmetry: "R-parity"

all SM-particles and Higgs bosons: even R-parity, $P_R = +1$

all superpartners: odd R-parity, $P_R = -1$

 \Rightarrow SUSY particles appear only in pairs, e.g. $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$

⇒ lightest SUSY particle (LSP) is stable (usually the lightest neutralino) good candidate for Cold Dark Matter

 $\Rightarrow M_{SUSY} \lesssim 1 \text{ TeV}$

LSP neutral, uncolored \Rightarrow leaves no traces in collider detectors

 \Rightarrow Typical SUSY signatures: "missing energy"

\Rightarrow prediction for collider phenomenology!

Cold Dark Matter

Cold Dark Matter exists:

 \Rightarrow It all fits together $\Omega_{\rm tot}~pprox~1$ $\Omega_M h^2 = 0.135^{+0.008}_{-0.009}$ $\Omega_B h^2 = 0.0224 \pm 0.0009$ Ω_{Λ} $\Omega_{\chi}h^2 = 0.112 \pm 0.018$ $\Omega_{\Lambda} \approx 0.73$ $\Omega_{\chi} \Rightarrow \text{dark matter}$ $\Omega_{\Lambda} \Rightarrow dark energy \dots$

Dark Matter in the CMSSM

parameter space:

schematic picture $(0.1 \le \Omega_{\chi} h^2 \le 0.3)$ [K. Olive et al. '02]

Despite its simplicity CMSSM fulfils all experimental bounds

Four mechanisms for "good" $\langle \sigma v \rangle$:

- Bulk
- Stau coannihilation
- Higgs-pole annihilation
- Focus-Point

 $m_{1/2}$

crosses: benchmark points

4. SUSY Higgs bosons and the LHC

Enlarged Higgs sector: Two Higgs doublets

$$H_1 = \begin{pmatrix} H_1^1 \\ H_1^2 \end{pmatrix} = \begin{pmatrix} v_1 + (\phi_1 + i\chi_1)/\sqrt{2} \\ \phi_1^- \end{pmatrix}$$
$$H_2 = \begin{pmatrix} H_2^1 \\ H_2^2 \end{pmatrix} = \begin{pmatrix} \phi_2^+ \\ \psi_2 + (\phi_2 + i\chi_2)/\sqrt{2} \end{pmatrix}$$

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM $\Rightarrow m_h \leq M_Z$

physical states: h^0, H^0, A^0, H^{\pm} Goldstone bosons: G^0, G^{\pm}

Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix} \qquad \tan(2\alpha) = \tan(2\beta) \frac{M_{A}^{2} + M_{Z}^{2}}{M_{A}^{2} - M_{Z}^{2}}$$
$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \chi_{1}^{0} \\ \chi_{2}^{0} \end{pmatrix}, \qquad \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix}$$

Three Goldstone bosons (as in SM): G^0 , G^{\pm}

 \longrightarrow longitudinal components of W^{\pm} , Z

 \Rightarrow Five physical states: h^0, H^0, A^0, H^{\pm}

h, *H*: neutral, CP-even, A^0 : neutral, CP-odd, H^{\pm} : charged

Gauge-boson masses:

$$M_W^2 = \frac{1}{2}g'^2(v_1^2 + v_2^2), \quad M_Z^2 = \frac{1}{2}(g^2 + g'^2)(v_1^2 + v_2^2), \quad M_\gamma = 0$$

Parameters in MSSM Higgs potential V (besides g, g'):

 $v_1, v_2, m_1, m_2, m_{12}$

relation for M_W^2 , $M_Z^2 \Rightarrow 1$ condition

minimization of V w.r.t. neutral Higgs fields H_1^1 , $H_2^2 \Rightarrow 2$ conditions

 \Rightarrow only two free parameters remain in V, conventionally chosen as $\tan\beta=\frac{v_2}{v_1},\qquad M_A^2=-m_{12}^2(\tan\beta+\cot\beta)$

 $\Rightarrow m_h$, m_H , mixing angle α , $m_{\mathrm{H}^{\pm}}$: no free parameters, can be predicted

In lowest order:

$$m_{\mathsf{H}^{\pm}}^2 = M_A^2 + M_W^2$$

Predictions for m_h , m_H from diagonalization of tree-level mass matrix:

 $\phi_1-\phi_2$ basis:

Tree-level result for m_h , m_H :

$$m_{H,h}^{2} = \frac{1}{2} \left[M_{A}^{2} + M_{Z}^{2} \pm \sqrt{(M_{A}^{2} + M_{Z}^{2})^{2} - 4M_{Z}^{2}M_{A}^{2}\cos^{2}2\beta} \right]$$

 $\Rightarrow m_h \leq M_Z$ at tree level

 \Rightarrow Light Higgs boson h required in SUSY

Measurement of m_h , Higgs couplings

 \Rightarrow test of the theory (more directly than in SM)

Higgs couplings, tree level:

$$g_{hVV} = \sin(\beta - \alpha) g_{HVV}^{SM}, \quad V = W^{\pm}, Z$$
$$g_{HVV} = \cos(\beta - \alpha) g_{HVV}^{SM}$$
$$g_{hAZ} = \cos(\beta - \alpha) \frac{g'}{2\cos\theta_W}$$

$$\begin{split} g_{hb\bar{b}}, g_{h\tau^+\tau^-} &= -\frac{\sin\alpha}{\cos\beta} g_{Hb\bar{b},H\tau^+\tau^-}^{\mathsf{SM}} \\ g_{ht\bar{t}} &= \frac{\cos\alpha}{\sin\beta} g_{Ht\bar{t}}^{\mathsf{SM}} \\ g_{Ab\bar{b}}, g_{A\tau^+\tau^-} &= \gamma_5 \tan\beta g_{Hb\bar{b}}^{\mathsf{SM}} \end{split}$$

⇒ $g_{hVV} \leq g_{HVV}^{SM}$, g_{hVV} , g_{HVV} , g_{hAZ} cannot all be small $g_{hb\bar{b}}, g_{h\tau+\tau^-}$: significant suppression or enhancement w.r.t. SM coupling possible

For $M_A\gtrsim$ 150 GeV:

The lightest MSSM Higgs is SM-like \Rightarrow SM analysis applies!

The heavy MSSM Higgses: $M_A \approx M_H \approx M_{H^\pm}$

→ coupling to gauge bosons ~ 0 ⇒ no decay $H \rightarrow WW^{(*)}$, ...

The lightest MSSM Higgs boson

MSSM predicts upper bound on M_h :

tree-level bound: $m_h < M_Z$, excluded by LEP Higgs searches!

Large radiative corrections:

 \rightarrow excursion

Yukawa couplings: $\frac{e m_t}{2M_W s_W}$, $\frac{e m_t^2}{M_W s_W}$, ...

 \Rightarrow Dominant one-loop corrections: $\Delta M_h^2 \sim G_\mu m_t^4 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

Present status of M_h prediction in the MSSM:

Complete one-loop and 'almost complete' two-loop result available

Excursion: Higgs mass calculations

What is a mass

Definition: The mass of a particle is the pole of the propagator Example: scalar particle

Propagator:

$$\frac{i}{q^2 - m^2}$$

 q^2 : four-momentum squared m^2 : constant in the Lagrangian

If one chooses $q^2 = m^2$ then the propagator has a pole. This q^2 is then the mass of the particle.

 \Rightarrow Pole of the propagator corresponds to zeroth of the inverse propagator. Inverse propagator:

$$-i(q^2 - m^2)$$

Problem: quantum corrections

Inverse propagator:

$$-i(q^2 - m^2) \longrightarrow -i(q^2 - m^2 + \hat{\Sigma}_h(q^2))$$

 $\hat{\Sigma}_h(q^2)$: renormalized Higgs self-energy

Calculation of the blob:

$$\hat{\Sigma}(q^2) = \hat{\Sigma}(1)(q^2) + \hat{\Sigma}(2)(q^2) + \dots$$

: all MSSM particles contribute main contribution: t/\tilde{t} sector (\tilde{t} : scalar top, SUSY partner of the t)

Dominant 1-loop corrections: $\Delta m_h^2 \sim G_\mu m_t^4 \log \left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} \right)$

size of the corrections: $\mathcal{O}(50 \text{ GeV})$

 \Rightarrow 2-Loop calculation necessary!

2-loop: $\hat{\Sigma}^{(2)}(0)$

[S. H., W. Hollik, G. Weiglein '98]

dominant contributions of $\mathcal{O}(\alpha_t \alpha_s)$:

(a) pure scalar diagrams(b) diagrams with gluonexchange(c) diagrams with gluinoexchange

Quite complicated calculation . . . ⇒ Need for computer algebra programms

 $['98 - '12:] \Rightarrow$ many more corrections calculated!

End of excursion: Higgs mass calculations

Mixing of the $\mathcal{CP}\text{-}even$ Higgs bosons:

Propagator/Mass matrix at tree-level:

$$\left(\begin{array}{cc} q^2 - m_H^2 & 0\\ 0 & q^2 - m_h^2 \end{array}\right)$$

Propagator / mass matrix with higher-order corrections $(\rightarrow$ Feynman-diagrammatic approach):

$$M_{hH}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ \\ \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H) : renormalized Higgs self-energies *CP*-even fields can mix

 \Rightarrow complex roots of det $(M_{hH}^2(q^2))$: $\mathcal{M}_{h_i}^2(i=1,2)$: $\mathcal{M}^2 = M^2 - iM\Gamma$

Upper bound on M_h in the MSSM:

"Unconstrained MSSM":

 M_A , tan β , 5 parameters in \tilde{t} -- \tilde{b} sector, μ , $m_{\tilde{g}}$, M_2

 $M_h \lesssim$ 135 GeV

for $m_t = 173.2 \pm 0.9$ GeV

(including theoretical uncertainties from unknown higher orders) \Rightarrow testable at the LHC

Obtained with:

FeynHiggs www.feynhiggs.de

[T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein, K. Williams '98 - '12]

 \rightarrow all Higgs masses, couplings, BRs (easy to link, easy to use :-)

Effects of the two-loop corrections to the lightest Higgs mass:

Example for one set of MSSM parameters

Effects of the two-loop corrections to the lightest Higgs mass:

Example for one set of MSSM parameters

Remaining theoretical uncertainties in prediction for M_h in the MSSM:

[G. Degrassi, S.H., W. Hollik, P. Slavich, G. Weiglein '02]

- From unknown higher-order corrections: $\Rightarrow \Delta M_h \approx 3 \text{ GeV}$
- From uncertainties in input parameters

 $m_t, \ldots, M_A, \tan \beta, m_{\tilde{t}_1}, m_{\tilde{t}_2}, \theta_{\tilde{t}}, m_{\tilde{g}}, \ldots$ $\Delta m_t \approx 1 \text{ GeV} \Rightarrow \Delta M_h \approx 1 \text{ GeV}$

Higgs couplings, production cross sections

 \Rightarrow also affected by large SUSY loop corrections

Extreme example: $\Gamma(h \rightarrow b\overline{b}) \rightarrow 0$ via loop corrections possible
$hf\bar{f}$ coupling:

$$A(h \to f\bar{f}) = \sqrt{Z_h} \left(\Gamma_h - \frac{\hat{\Sigma}_{\mathsf{hH}}(M_h^2)}{M_h^2 - m_H^2 + \hat{\Sigma}_{\mathsf{HH}}(M_h^2)} \Gamma_H \right)$$

 \Rightarrow Effective $hf\bar{f}$ coupling can vanish for large $\hat{\Sigma}_{hH}$

Gluino vertex corrections to $h \rightarrow q\bar{q}$:

⇒ ratio $\Gamma(h \rightarrow \tau^+ \tau^-)/\Gamma(h \rightarrow b\overline{b})$ can significantly differ from SM value for large tan β

Effective $hf\bar{f}$ coupling can go to zero for large $\hat{\Sigma}_{hH}$ \Rightarrow "Pathological regions" [W. Loinaz, J. Wells '98] [M. Carena, S. Mrenna, C. Wagner '99]

The heavy MSSM Higgs bosons

Differences compared to the SM Higgs:

Additional enhancement factors compared to the SM case:

 \Rightarrow other parameters enter \Rightarrow strong μ dependence

Most powerful LHC search modes for heavy MSSM Higgs bosons:

$$b\overline{b} \to H/A \to \tau^+ \tau^- + X$$

$$gb \to tH^{\pm} + X, \ H^{\pm} \to \tau\nu_{\tau}$$

$$pp \to t\overline{t} \to H^{\pm} + X, \ H^{\pm} \to \tau\nu_{\tau}$$

Enhancement factors compared to the SM case:

$$H/A : \frac{\tan^2 \beta}{(1+\Delta_b)^2} \times \frac{\mathsf{BR}(H \to \tau^+ \tau^-) + \mathsf{BR}(A \to \tau^+ \tau^-)}{\mathsf{BR}(H \to \tau^+ \tau^-)_{\mathsf{SM}}}$$
$$H^{\pm} : \frac{\tan^2 \beta}{(1+\Delta_b)^2} \times \mathsf{BR}(H^{\pm} \to \tau \nu_{\tau})$$

⇒ Δ_b effects (often neglected by ATLAS/CMS analyses) also relevant for BR($H/A \rightarrow \tau^+ \tau^-$), BR($H^\pm \rightarrow \tau \nu_\tau$) also relevant: correct evaluation of $\Gamma(H/A/H^\pm \rightarrow \text{SUSY})$ ⇒ additional effects on BR($H/A \rightarrow \tau^+ \tau^-$), BR($H^\pm \rightarrow \tau \nu_\tau$)

MSSM Higgs boson searches at the LHC

Overview about MSSM Higgs boson searches at the LHC:

1. Light MSSM Higgs boson in the decoupling limit:

- \rightarrow SM Higgs searches apply
- \rightarrow keep in mind the upper limit of 135 GeV
- \Rightarrow no limits beyond LEP so far!
- 2. Light MSSM Higgs boson "before" the decoupling limit:
 - \rightarrow dedicated search necessary
 - \rightarrow SM-like search with reduced couplings
 - $ightarrow p_0 \ \oplus \ \mu$ with reduced $\sigma imes \mathsf{BR}$
- 3. Hevay MSSM Higgs boson:
 - \rightarrow dedicated search
 - \Rightarrow model independent results on $\sigma \times {\rm BR}$
 - \Rightarrow specific MSSM results for H/A

Search for the MSSM Higgs bosons:

Situation is more involved due to many SUSY parameters

 \rightarrow investigate benchmark scenarios:

 \rightarrow Vary only M_A and tan β

 \rightarrow Keep all other SUSY parameters fixed

1. m_h^{max} scenario:

 \rightarrow obtain conservative tan β exclusion bounds ($X_t = 2 M_{SUSY}$)

2. no-mixing scenario

 \rightarrow no mixing in the scalar top sector ($X_t = 0$)

3. small α_{eff} scenario

 $\rightarrow hb\bar{b}$ coupling $\sim \sin \alpha_{\rm eff} / \cos \beta$ can be zero: $\alpha_{\rm eff} \rightarrow 0$:

main decay mode vanishes, important search channel vanishes

4. gluophobic Higgs scenario

 $\rightarrow hgg$ coupling is small: main LHC production mode vanishes

[M. Carena, S.H., C. Wagner, G. Weiglein '02]

Overview about SUSY Higgs production cross sections ($\phi = h, H, A$)

[Tev4LHC Higgs working group report '06]

gluon fusion: $gg \rightarrow \phi$ weak boson fusion (WBF): $q\bar{q} \rightarrow q'\bar{q}'\phi$

top quark associated production: $gg, q\bar{q} \rightarrow t\bar{t}\phi$

weak boson associated production: $q\bar{q}' \rightarrow W\phi, Z\phi$

NEW: $b\overline{b}\phi$

Search for the lightest MSSM Higgs at the LHC:

 \Rightarrow full parameter accessible But there might be problems . . .

Possible problem in SUSY:

 $h \to b \overline{b}$

- can be strongly suppressed
- \rightarrow "Small $\alpha_{\rm eff}$ scenario"

[*M. Carena, S.H., C. Wagner, G. Weiglein '02*]

 \Rightarrow Strong suppression of $h \to b \overline{b}$ possible, up to $M_A \lesssim$ 350 GeV

(not realized in CMSSM, GMSB, AMSB, ...)

Possible problem in SUSY:

 $gg \to h \to \gamma\gamma$

can be strongly suppressed

- → "gluophobic Higgs scenario"
- [M. Carena, S.H., C. Wagner,

G. Weiglein '02]

 \Rightarrow Strong suppression of $gg \rightarrow h \rightarrow \gamma \gamma$ possible over the whole parameter space

(not realized in CMSSM, GMSB, AMSB, ...)

Sven Heinemeyer, ISAPP (La Palma), 18.-20.07.2012

Implications of Higgs searches for SUSY

The latest results on ATLAS/CMS Higgs searches were presented on 04.07.2012 before 11am

On 05.07.2011 about 3 articles appeared on the arXiv, analyzing the implications

Most of them analyzed them in the framework of SUSY

Here a few results from one randomly picked article: [arXiv:1207.1096 [hep-ph] (R. Benbrik, M. Gomez Bock, S.H., O. Stal, G. Weiglein, L. Zeune)]

 $M_h = 125 \pm 1(\text{exp.}) \pm 2(\text{theo.}) \text{ GeV}$

Possible MSSM interpretation:

[R. Benbrik, M. Gomez Bock, S.H., O. Stal, G. Weiglein, L. Zeune '12]

Scan over the MSSM parameter space:

 \Rightarrow enhanced $\gamma\gamma$ rate, suppressed WW, $b\overline{b}$ rate possible!

 $M_h = 118 \pm 3 \,({\rm exp}) \pm 1.5 ({\rm theo}) \,\,{\rm GeV} \qquad \Delta \chi^2 (M_h = 125 \,\,{\rm GeV}) \approx 2.2$

[2011]

 $M_h = 118^{+3}_{-1} \,(\text{exp}) \pm 1.5 (\text{theo}) \,\,\text{GeV} \qquad \Delta \chi^2 (M_h = 125 \,\,\text{GeV}) \approx 1.6$

Randomly picked analysis: Finite Unified MSSM prediction (2008)

[S.H., M. Mondragon, G. Zoupanos '08]

 \Rightarrow 120 GeV $\leq M_h \leq$ 126 GeV (no theory error incl. yet)

Recent SUSY searches at the LHC

Colored sparticles at the LHC

SUSY particle production at the LHC:

 \Rightarrow colored (s)particles are copiously produced

 \Rightarrow production of gluinos, squarks, . . .

As in QCD: NLO corrections are crucial!

Example for SUSY production:

[Prospino collaboration]

As in QCD: NLO corrections are crucial!

Production of SUSY particles at the LHC

will in general result in complicated final states \Rightarrow cascade decays

$$\tilde{g} \to \bar{q}\tilde{q} \to \bar{q}q\tilde{\chi}_2^0 \to \bar{q}q\tilde{\tau}\tau \to \bar{q}q\tau\tau\tilde{\chi}_1^0$$

Production of SUSY particles at the LHC

will in general result in complicated final states \Rightarrow cascade decays

$$\tilde{g} \to \bar{q}\tilde{q} \to \bar{q}q\tilde{\chi}_2^0 \to \bar{q}q\tilde{\tau}\tau \to \bar{q}q\tau\tau\tilde{\chi}_1^0$$

Production of SUSY particles at the LHC

will in general result in complicated final states \Rightarrow cascade decays

$$\tilde{g} \to \bar{q}\tilde{q} \to \bar{q}q\tilde{\chi}_2^0 \to \bar{q}q\tilde{\tau}\tau \to \bar{q}q\tau\tau\tilde{\chi}_1^0$$

Production of uncolored particles via cascade decays often dominates over direct production – Many states are produced at once

⇒ Main background for SUSY is SUSY itself!

different patterns due to different SM particles "coming out":

Signature	Motivating Model(s)	Comments
l Jet + 0 Lepton + MET 70/pb	 Large Extra Dim (ExoGraviton) strong qG production, G propagate in extra Dim Planck Scale is MD in 4+δ dim Normal Gravity >> R SUSY qg→ISR + 2 Neutralino or squark + Neutralino 	 Not primary discovery channel for SUGRA, GMSB, AMSB but helps in characterization Possible leading discovery for neutralino NLSP with nearly degenerate gluino
2,3,4 [b]-Jet + 0 Lepton + MET 310/nb for b-jets 35/pb	<pre>Image of the second seco</pre>	 Possible leading squark/ gluino discovery channel Must manage QCD bkg
2,3,4 [b]-Jet + Lepton + MET 310/nb for b-jets 35/pb	squark/gluino production with cascades which include electroweak (or partner) decays • high tan β leads to more τ's	 Lepton requirement suppresses QCD Τ's partially covered by e/μ
2 lepton + MET 70/nb	 Same sign: gluino cascade can have either sign lepton squark/gluino prod can produce same sign. Opposite sign: squark/gluino decay dediated by Z (or partner) Same flavor: 2 leptons from same sparticle cascade must be same flavor 	 Reduced SM backgrounds for same sign Opposite Sign-Flavor Subtraction
3 lepton + MET	 SUSY events ending in Chargino/neutralino pair decays Weak Chargino/Neutralino production Exotic sources 	• Low SM bkgs
2 photon + MET 3.1/pb	 GMSB models with gravitino LSP and neutralino or stau NLSP UED- each KK partons cascade to LKP which decays to graviton + γ 	 No SUSY limit (not sensitive at the time)

 \Rightarrow valid also for other tan β and A_0 values ??

[ATLAS '12]

 \Rightarrow valid also for other tan β and A_0 values ??

Interpretation of SUSY search results in "simplified models": [ATLAS '12]

"Simplified model": squarks of first two generations, gluino, massless neutralino (LSP), all other SUSY particles heavy

SUSY limits in "simplified models" with LSP mass varied from 0 to $m_{\tilde{q}} - 200$ GeV:

Ranges of exclusion limits for gluinos and squarks, varying m($\tilde{\chi}^0$) CMS preliminary

\Rightarrow strong dependence on LSP mass!

Sven Heinemeyer, ISAPP (La Palma), 18.-20.07.2012

[CMS '11]

[ATLAS '12]

 \Rightarrow very light stop allowed for heavier gluinos

Limit on direct sbottom production:

[ATLAS '12]

 \Rightarrow weak limits for $m_{{\widetilde \chi}^0_1} \lesssim 125~{
m GeV}$

Direct LHC limits on ...

(direct = not via cascade decay)

- charginos
- neutralinos
- sleptons
- "EW SUSY particles"

Direct LHC limits on ...

(direct = not via cascade decay)

- charginos
- neutralinos
- sleptons

"EW SUSY particles"

 \Rightarrow smaller production cross section \Rightarrow more difficult analyses . . .

Direct LHC limits on ...

(direct = not via cascade decay)

- charginos
- neutralinos
- sleptons

"EW SUSY particles"

 \Rightarrow smaller production cross section \Rightarrow more difficult analyses . . .

 \Rightarrow no LHC limits - yet

We are eagerly waiting for these results!

Very recent exception: $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to \dots$

[ATLAS '12]

 \Rightarrow trilepton + MET

\Rightarrow no strong limits yet . . .
CMS-PAS-SUS-11-013

EWK-inos

Implications for SUSY fits and Dark Matter

Comparison of precision observables with theory:

Test of theory at quantum level: Sensitivity to loop corrections

 \Rightarrow Information about unknown parameters

Very high accuracy of measurements and theoretical predictions needed

The most beautiful example:

The most beautiful example:

Main idea of SUSY fits:

Combine all existing precision data:

- Electroweak precision observables (EWPO)
- *B* physics observables (BPO)
- Cold dark matter (CDM)

• . . .

Predict:

- best-fit points
- ranges for Higgs masses
- ranges for SM parameters
- ranges for SUSY masses
 ⇒ Implications for current and future experiments

 \Rightarrow Combination only possible in very const. models: CMSSM, NUHM1, ...

The "MasterCode"

 ⇒ collaborative effort of theorists and experimentalists
 [Buchmüller, Cavanaugh, De Roeck, Dolan, Ellis, Flächer, SH, Isidori, Marrouche, Martinez Santos, Olive, Rogerson, Ronga, de Vries, Weiglein]

Über-code for the combination of different tools:

- tools are included as subroutines
- compatibility ensured by collaboration of authors of "MasterCode" and authors of "sub tools" /SLHA(2)
- one "MasterCode" for one model . . .
- \Rightarrow evaluate observables of one parameter point consistently with various tools

cern.ch/mastercode

 \rightarrow global χ^2 likelihood function

combines all theoretical predictions with experimental constraints:

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{(f_{\mathsf{SM}_{i}}^{\mathsf{obs}} - f_{\mathsf{SM}_{i}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{i}})^{2}}$$

- N: number of observables studied
- *M*: SM parameters: $\Delta \alpha_{had}, m_t, M_Z$
- C_i : experimentally measured value (constraint)
- P_i : MSSM parameter-dependent prediction for the corresponding constraint

Assumption: measurements are uncorrelated - fulfilled to a high degree

pre-LHC predictions:

[2010]

 \Rightarrow "best-fit points and part of 68% C.L. are can be tested in 2011"

Inclusion of LHC searches

Obvious idea:

(so far) negative search results for SUSY particles/effects yield

new χ^2 (LHC-SUSY, LHC-Higgs, ...) contribution

Assumption for Higgs:

 $M_h = 125 \pm 1(exp.) \pm 1.5(theo.) \text{ GeV}$

Expected effect: disfavor low $m_0-m_{1/2}$ values

Inclusion of LHC searches

Obvious idea:

(so far) negative search results for SUSY particles/effects yield

new χ^2 (LHC-SUSY, LHC-Higgs, ...) contribution

Assumption for Higgs:

 $M_h = 125 \pm 1(exp.) \pm 1.5(theo.) \text{ GeV}$

Expected effect: disfavor low $m_0-m_{1/2}$ values

 \Rightarrow Implications for SUSY fits?

 \Rightarrow Implications for Dark Matter?

Inclusion of LHC searches

Obvious idea:

(so far) negative search results for SUSY particles/effects yield

new χ^2 (LHC-SUSY, LHC-Higgs, ...) contribution

Assumption for Higgs:

 $M_h = 125 \pm 1(exp.) \pm 1.5(theo.) \text{ GeV}$

Expected effect: disfavor low $m_0-m_{1/2}$ values

 \Rightarrow Implications for SUSY fits?

 \Rightarrow Implications for Dark Matter?

```
\Rightarrow not as trivial as you might think!
```


[2011]

CMSSM

NUHM1

dotted: pre-LHC/Xenon, solid: post-LHC (1 fb⁻¹)/Xenon \Rightarrow new best-fit point within old 95% CL area \Rightarrow hardly any overlap between old and new 68% CL areas \Rightarrow shift to higher masses

[2011]

CMSSM

NUHM1

dotted: pre-Higgs, solid: post-Higgs \Rightarrow shift to even higher masses

even larger allowed ranges . . \Rightarrow bad prospects for DM searches?

Starting point of the cascade: gluino (incl. 1/fb of LHC data)

[2011]

dotted: pre-LHC/Xenon, solid: post-LHC (1 fb⁻¹)/Xenon \Rightarrow substantial upward shift

[2011]

NUHM1

dashed: pre-Higgs, solid: post-Higgs \Rightarrow another upward shift - very shallow now

Sven Heinemeyer, ISAPP (La Palma), 18.-20.07.2012

CMSSM

dotted: pre-Higgs, solid: post-Higgs \Rightarrow shift higher masses and lower cross sections

 \Rightarrow bad expectations?

What is happening to the χ^2 ?

Low energy data (mostly $(g - 2)_{\mu}$ favors low SUSY mass scales LHC data favors higher SUSY scales M_h "measurement" moves the fit to even higher scales

 \Rightarrow tension, reflected in rising χ^2 :

Model	Min. χ^2	Prob.	$m_{1/2}$	m_0	A ₀	$tan \beta$	M_h^{noLEP}
			(GeV)	(GeV)	(GeV)		(GeV)
CMSSM	21.5/20	37%	360	90	-50	15	111
LHC $1{ m fb}^{-1}$	28.8/22	15%	780	450	-1100	41	119
$M_{h} = 125$	31.0/23	12%	1800	1140	1370	46	—
NUHM1	20.8/18	29%	340	110	520	13	119
LHC $1{ m fb}^{-1}$	27.3/21	16%	730	150	-910	41	119
$M_h = 125$	28.9/22	15%	920	270	1730	27	—

Model	Min. χ^2	Prob.	$m_{1/2}$	<i>m</i> ₀	A ₀	$tan \beta$	M_h^{noLEP}
			(GeV)	(GeV)	(GeV)		(GeV)
CMSSM	21.5/20	37%	360	90	-50	15	111
LHC $1 \mathrm{fb}^{-1}$	28.8/22	15%	780	450	-1100	41	119
$M_h = 125$	31.0/23	12%	1800	1140	1370	46	_
NUHM1	20.8/18	29%	340	110	520	13	119
LHC $1 \mathrm{fb}^{-1}$	27.3/21	16%	730	150	-910	41	119
$M_h = 125$	28.9/22	15%	920	270	1730	27	—

Model	Min. χ^2	Prob.	$m_{1/2}$	<i>m</i> ₀	A ₀	$tan \beta$	M_h^{noLEP}
			(GeV)	(GeV)	(GeV)		(GeV)
CMSSM	21.5/20	37%	360	90	-50	15	111
LHC 1 fb $^{-1}$	28.8/22	15%	780	450	-1100	41	119
$M_h = 125$	31.0/23	12%	1800	1140	1370	46	_
NUHM1	20.8/18	29%	340	110	520	13	119
LHC 1 fb $^{-1}$	27.3/21	16%	730	150	-910	41	119
$M_h = 125$	28.9/22	15%	920	270	1730	27	—

Probabilities still ok, but this might change with more data.

Not finding SUSY early does not make DM looks bad,

makes some very constrained models look bad!

Model	Min. χ^2	Prob.	$m_{1/2}$	<i>m</i> ₀	A ₀	$tan \beta$	M_h^{noLEP}
			(GeV)	(GeV)	(GeV)		(GeV)
CMSSM	21.5/20	37%	360	90	-50	15	111
LHC 1 fb $^{-1}$	28.8/22	15%	780	450	-1100	41	119
$M_h = 125$	31.0/23	12%	1800	1140	1370	46	_
NUHM1	20.8/18	29%	340	110	520	13	119
LHC 1 fb $^{-1}$	27.3/21	16%	730	150	-910	41	119
$M_h = 125$	28.9/22	15%	920	270	1730	27	—

Probabilities still ok, but this might change with more data.

Not finding SUSY early does not make DM looks bad,

makes some very constrained models look bad!

An MSSM Higgs at 125 GeV makes CMSSM/NUHM1 unlikely

Model	Min. χ^2	Prob.	$m_{1/2}$	<i>m</i> ₀	A ₀	$tan \beta$	M_h^{noLEP}
			(GeV)	(GeV)	(GeV)		(GeV)
CMSSM	21.5/20	37%	360	90	-50	15	111
LHC 1 fb $^{-1}$	28.8/22	15%	780	450	-1100	41	119
$M_h = 125$	31.0/23	12%	1800	1140	1370	46	_
NUHM1	20.8/18	29%	340	110	520	13	119
LHC 1 fb $^{-1}$	27.3/21	16%	730	150	-910	41	119
$M_h = 125$	28.9/22	15%	920	270	1730	27	—

Probabilities still ok, but this might change with more data.

Not finding SUSY early does not make DM looks bad,

makes some very constrained models look bad!

An MSSM Higgs at 125 GeV makes CMSSM/NUHM1 unlikely

And requires SUSY realizations that are in agreement with

- higher colored mass scales (LHC limits)
- lower uncolored mass scales (EWPO; $(g-2)_{\mu}$) \Rightarrow DM

An MSSM Higgs at 125 GeV makes CMSSM/NUHM1 unlikely

And requires SUSY realizations that are in agreement with

- higher colored mass scales (LHC limits)
- lower uncolored mass scales (EWPO; $(g-2)_{\mu}$) \Rightarrow DM

The LHC searches (mainly) for colored particles, DM requires (mainly) uncolored particles!

Any inference from one sector to the other is strongly model dependent!

 \Rightarrow look for other models...?

"Typical" CMSSM scenario

(SPS 1a benchmark scenario):

Strong connection between

all the sectors

SPS1a variant (I) colored and uncolored sector decoupled:

[J. List et al. '12]

SPS1a variant (II) colored and uncolored sector decoupled:

[J. List et al. '12]

5. Conclusinos

- The <u>Standard Model (SM)</u> of particle physics: rock-solid foundation problem: no Dark Matter candidate
- Interesting alternative: <u>Supersymmetry</u>
 - → Minimal Supersymmetric Standard Model (MSSM) ⇒ Dark Matter candidate: $\tilde{\chi}_1^0$, coupling constrant unification, ...
- Higgs searches at the LHC: we have a **DISCOVERY** !!! :-) \Rightarrow compatible with $M_H \simeq 125$ GeV
- SM interpretation: fits well
 MSSM interpretation: fits equally well or even better?
 ⇒ slowly approaching coupling determination
- SUSY searches:

Results are presented in the CMSSM or in "simplified models"

- \Rightarrow limits of \sim 500 1200 GeV
- \Rightarrow weak limits for 3rd generation squarks, "EW SUSY particles"
- \Rightarrow all limits strongly dependent on assumptions!

