

Interaction of the CMB with Astrophysical Plasma: high-E

Sergio Colafrancesco

Wits University - DST/NRF SKA Research Chair INAF-OAR Email: <u>Sergio.Colafrancesco@wits.ac.za</u>

Outline

Lecture 1

- CMB photon interaction
- LSS: plasma content
- Spectral and spatial properties
- Plasma CMB photon interaction: basic mechanisms
- ICS, Pair production, Primakov effect
- Lecture 2
 - The SZ effect: thermal, non-th, kinetic, polarization
 - General description
 - Galaxy clusters
 - RGs and other cases
 - Experimental outline
- Lecture 3
 - IC-CMB and high energy phenomena
 - 🛚 X-rays
 - Gamma-rays
 - Multi-frequency studies
 - An experimental outline

Inverse Compton Scattering

- Interaction of secondary electrons from DM annihilation with the CMB
 - Hard X-Rays
 - Gamma-rays
- Interaction of Cosmic Rays in cluster (with Radio Halos) with the CMB
 - Hard X-Rays
 - Gamma-rays
 - The WR model
- Interaction of Cosmic Rays in cavities with the CMB
 - B HXR
 - Gamma-rays
- Interaction of Cosmic Rays in radiogalaxy lobes with the CMB
 - 🛚 X-rays
 - Gamma-rays

Dark Matter annihilation

High frequency

Leptons: e[±] equilibrium spectrum

Solution: complete

Energy losses vs. Diffusion

Solution: qualitative

V_D V,

 $\tau_{loss} \ll \tau_{D}$

$$n_e(E,r) = \left[Q_e(E,r)\tau_{loss}\right]$$

$$n_e(E,r) = \left[Q_e(E,r)\tau_{loss}\right] \cdot \frac{V_{source}}{V_{diffusion}} \cdot \frac{\tau_D}{\tau_{loss}}$$

 $\tau_{loss} \gg \tau_{D}$

WIMP (neutralino) composition

[Colafrancesco, Profumo, Ullio 2006]

Galaxy Clusters DM Challenge

Large-size, co-spatial DM & baryons... but few good cases !

DM signals: the case of Perseus

DM signals: the case of Perseus

A Dark Temptation

Explain HXR in cluster as DM annihilation signals

More than 20 clusters with Hard X-ray excess at E> 20 keV (Swift-BAT data, BeppoSAX data)

Equally fit with:

- Two temperature (thermal) plasma
- Thermal plasma + non-thermal power-law

AGN emission or ICS from DM / CR interaction

Hard X-ray excess

Consequences

Consequences: DM & gas heating

DM models & non-thermal phenomena

DM models & non-thermal phenomena

Dark Temptations never go away ...

HXR – gamma vs. HXR - Radio

DM signal profiles HXR-Radio-gamma

There is a clear spatial signature of DM signals visible in the HXRs

Clear HXR-radio correlations at large angular scales (> 1 arcmin) No clear HXR-gamma correlation at all angular scales

Dwarf Spheroidals DM challenge

Small-size, dynamically un-relaxed... but few good cases !

The darkest galaxies in the universe

Segue 1 dwarf galaxy $\rightarrow M/L_V \sim 3400 M_{\odot}/L_{\odot}$

The Dwarf Galaxies DM challenge

- R ~ kpc
- No gas
- Little dust
- No Crs
- 1 (or 2) stellar populations
- M/L ~ 500 3500

+ Ideal systems to probe DM+ Clean multi-v features

but...

Strong diffusion effectsLow signals

$$n_{e}(E,r) = \left[Q_{e}(E,r)\tau_{loss}\right] \cdot \frac{V_{source}}{V_{source} + V_{diffusion}} \cdot \frac{\tau_{D}}{\tau_{D} + \tau_{loss}}$$

$$\mathbf{v}_{\mathbf{D}}$$

$$\mathbf{v}_{\mathbf{loss}} \gg \mathbf{\tau}_{\mathbf{D}}$$

$$n_{e}(E,r) = \left[Q_{e}(E,r)\tau_{loss}\right] \cdot \frac{V_{source}}{V_{diffusion}} \cdot \frac{\tau_{D}}{\tau_{loss}}$$

$$\mathbf{I}_{v}$$

Expectations: the HXR range

Dwarf Sph. Galaxies & DM

$\textbf{ATCA} \rightarrow \textbf{MeerKAT} \rightarrow \textbf{SKA}$

Dark Matter search @ radio

10

х

- SKA-P2 (0.1-45 GHz) MeerKAT (0.7-20 GHz)
- Measure radio (low v) & ICS emission (high v)
- Disentangle electron population and B-field \rightarrow $F_{radio}/F_{ICS} = U_B/U_{CMB}$
- DM halo Cosmology: "purified" DM halo

DM search @ radio: galaxy clusters

Baryons + Cosmic Rays

Dark Matter

Dark Matter & Radio Halos

 $\sqrt{1/2}$

Dark Matter annihilation can reproduce the spectral and spatial features of galaxy clusters Radio Halos [S.C. et al. 2001, 2006, 2008, 2010, 2011]

Sensitivity to DM composition

b-b model preferred by RH spectra with neutralino mass $M_{\gamma} \sim 40-60 \text{ GeV}$ (CRESST-II results)

Sensitivity to DM particle mass

16 14

Lowe

Lower I.
$$M_{\chi} \ge \frac{10.44}{k} \text{ GeV} \left(\frac{\nu_{max,obs}}{\text{GHz}}\right)^{1/2} B_{\mu}^{-1/2}$$
Upper I.
$$M_{\chi} \le 74.3 \text{ GeV} \left(\frac{\nu_{max}}{10 \text{ GHz}}\right)^{1/2} B_{\mu}^{-1/2}$$

DM halo cosmology A new component in galaxy evolution 0.78Gyr in addition to CRs + HI + B • DM-radio @ z>10 SZE_{DM} (z-independent) 0.84Gyr • DM - high-E • DM – multi-v 1.01Gyr 13.7Gyr Z=7.0 Z=6.6 Z=5.7 Z=0

Radio emission from DM halos

Radio emission from DM halos

- Dwarf galaxies (\rightarrow DM halos)
- Proto-galaxies $(\rightarrow DM halos)$

CRs in clusters: radio emission

CRs in clusters: Hard X-Rays

Beppo-SAX INTEGRAL

First detection of hard X-rays in Coma at E > 20keV

HXR spectrum has a slope consistent with the synchrotron radio spectrum

$$I_{ICS}(\nu) \propto E^{-(p-1)/2}$$

 $I_{Sync}(v) \propto E^{-(p-1)/2} \cdot B^{[(p-1)/2+1]}$

Cosmic rays in clusters

CR direct acceleration efficiency

Examples: Ophiuchus and Perseus

Ophiuchus cluster

- Single-T ~ 9.5 keV
- no-Cool Core
- no AGN in the core
- Radio halo @1.4GHz

(DM, CRs, WRs,...)

- Multi-T
- Cool Core
- AGN-dominated core
- Mini Radio halo
- Non-thermal plasma

(DM, CRs, WRs, BH,..)

Padine (kna)

[Colafrancesco & Marchegiani 2009]

A consistent model: Warming Rays

A self-consistent description of non-thermal phenomena in clusters based on the ability to recover the thermal structure of clusters.

BHs, WRs & Cooling Flows

$$\frac{\partial N}{\partial t} - \nabla (D\nabla N) - \frac{\partial (b_p N)}{\partial E} = Q_p$$

$$\mathbf{N_{CR}}(\mathbf{r}) \sim [\mathbf{n_{th}}(\mathbf{r})]^{\alpha}$$

[Colafrancesco & Marchegiani 2008]

Warming Rays in cool cores

WRs, HXR and γ-rays

	Cluster	α	$n_{\rm WR,0}$	P_{WR}/P_{th}	F_{γ}	L_{γ}	F_{HXR}	
			cm^{-3}		${\rm cm}^{-2'}{\rm s}^{-1}$	$erg s^{-1}$	${ m erg}~{ m cm}^{-2}~{ m s}^{-1}$	
	A262	0.83	$2.20 imes10^{-3}$	1.23	3.89×10^{-9}	$1.43 imes 10^{42}$	3.87×10^{-14}	
	A2199	0.83	$2.31 imes 10^{-3}$	0.92	$8.43 imes 10^{-9}$	$1.08 imes10^{43}$	3.06×10^{-13}	
	A133	0.84	$4.56 imes10^{-4}$	0.77	$7.30 imes 10^{-10}$	$3.53 imes10^{42}$	$6.10 imes 10^{-15}$	
	Perseus	0.91	$4.98 imes 10^{-4}$	0.54	$2.20 imes 10^{-8}$	$9.91 imes 10^{42}$	1.59×10^{-13}	
	Hydra	0.97	$6.24 imes 10^{-4}$	0.57	$3.46 imes 10^{-9}$	$1.49 imes 10^{43}$	2.57×10^{-14}	
	A1795	0.96	$5.55 imes 10^{-4}$	0.50	$3.17 imes 10^{-9}$	$1.86 imes 10^{43}$	2.41×10^{-14}	
	A2390	0.94	$2.21 imes10^{-4}$	0.41	1.41×10^{-10}	$1.39 imes 10^{43}$	6.17×10^{-16}	
L _{gamma} (×10 ⁴³ erg/s) 1 01		• • • •	•	10 F _{gamma} (×10 ⁻⁹ pho/cm ² s)			GLAST-LA (1yr.5σ) (5yr,5σ)	
1	1 10				1 10			
	KT _{inner} (keV)				KT _{inner} (keV)			

NGC 1275 / Perseus cluster

Radio Halos & Cosmic Rays STRATEGY ⇒ SKA Derive both n_e and B from single SKA observations Combine: radio + ICS 0.1-1 GHz + 30 GHz

ASDC Xrays from BHs & cavities in clusters

Multi–v emission from cavities

Cavity E ~ 10^{60-63} ergs

Cavity Age $\geq 10^8$ yrs

Diffusion D $\leq 10^{28}$ cm²/s

[Brighenti & Matthews 2007]

Radio galaxy jets

Radiogalaxy jets: emission

Chandra (color)+5GHz (contours)

Chandra (color)+[™]1.4GHz (contours)

$$F_{radio} \approx v^{-\alpha} B^{2(\alpha+1)} \qquad F_{X-ray} \approx E^{-\alpha}$$

The co-spatial location and the similarity in the X-ray and radio spectra indicate a common parent population $\rightarrow N_e \sim E^{-p}$ for the electrons responsible for the jet/lobe emission

RGs: jet/lobe diffuse emission

Radiogalaxy jet energetics

A tale of a giant radiogalaxy: DA 240

SZE: RG lobe energetics revisited

Synergy with ground-based exps.

- Approved (25/5/2012)
- SA (70%) & Au (30%)¹⁰⁰⁰ 3C292 SA: 0.7-15 GHz Au: low-v + high-v
- Wide FOV
- Multi-beaming
- High survey speed
- Polarization

- OperatingESO
 - 84 950 GHz
 - 3.6" 0.43"
- Small FOV
- Mosaicing mode
- Polarization

Galaxy cores

Galactic bubbles: Planck

Galactic bubbles: Planck (red) + Fermi)violet)

Bubbles show energetic spectrum and sharp edges Bubble spectrug **Bubble emission** Spectrum of diffuse 10 Energy (GeV) **Distance from bubble center** Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al. Gamma-ray emissions X-ray emissions 50.000 light-years Milky Way Sun

Further readings

Colafrancesco: 2010MmSAI..81..104C

- : 2008ChJAS...8...61C
- : 2008MmSAI..79..213C
- : 2010AIPC.1206....5C

Blumenthal and Gould (1970): 1970RvMP...42..237B Rybicki and Lightman (1979): Radiative Processes in Astrophysics Longair (1993): High Energy Asrophysics Crocker, R.M.: arXiv:1112.6247, arXiv:1112.6249 Bergstrom, L.: arXiv:1202.1170 Fabian, A.C.: arXiv:1204.4114

