

ROLLMOPS

Researches on Low (amplitude) Level Modulations :

Observation of Planetary Signals

LESIA Observatoire de Paris Benjamin SAMUEL Daniel ROUAN

Transit detection algorithms Box Least Square / Matched-Filter

Kovacs et al. (2002), Aigrain et Irwin (2004), Bordé et al. (2007)

1. Detrending (&pre-filtering)

- 3. Deduce the «best» set of parameters (= maximum of likelihood)
- 4. Assess the detection confidence level

2. Folding and Fitting / cross-correlate

=> Use of the $a\ priori$ on shape of the signal.

Search for periodic signals with no information on the shape.

Fourier Transform?
Energy of non sinusoidal signal is diluated into harmonics.

- Other solutions?
- => fold the LC and study the dispersion.
- = Phase Dispersion Minimisation (Stellingwerf 1978)

Detrend, fold,...

Split data into evenly sampled bins / phase

- Subtract the median of each bin.
- © Compare the energy of the signal before and after subtraction.

Detrend, fold,...

Split data into evenly sampled bins / phase

Detrend, fold,...

Split data into evenly sampled bins / phase

Detrend, fold,...

Split data into evenly sampled bins / phase

Detrend, fold,...

Split data into evenly sampled bins / phase

Detrend, fold,...

Subtract the median of each bin.

$$\Delta E = \sum_{i,j} x_{i,j}^2 - \sum_{i,j} \left(x_{i,j} - med(x_j) \right)^2$$

2 Time (d) 3

4

-0.012 L

Detection of all kind of periodic signal

Detection of all kind of periodic signal

Detection of all kind of periodic signal

Test on known or simulated data

Could we find CoRoT-7b with this method?

Transit signal detection in the best situation

Simulated transits:

P=0.75d

d=1.5h

 $R \ge 0.3 R_{EARTH} \iff dF/F \ge 10^{-5}$

Transit signal detection in the best situation

Results

No signal found: $dF/F < 8. 10^{-5} <=> R < 0.8 R_{EARTH}$

Parameters retrieved (but low SNR): $dF/F \ge 8.10^{-5} \iff R \ge 0.8 R_{EARTH}$

Detection (SNR ok): $dF/F \ge 10^{-4} \iff R \ge 0.9 R_{EARTH}$

Transit signal detection «best situation»

Results

No signal found:

 $dF/F < 8. 10^{-5} \iff R < 0.8 R_{EARTH}$

Parameters retrieved (but low SNR): $dF/F \ge 8.10^{-5} \iff R \ge 0.8 R_{EARTH}$

Detection (SNR ok):

 $dF/F > 10^{-4} \iff R > 0.9 R_{EARTH}$

Conclusion

Results:

- Find/subtract (any) periodic signals => filter
- Transit detection: ok (used on the last runs)

TBD:

- Fine tuning
- Full characterization of the methods

Please have a look...

... to J. Devor's poster.