The PLATO 2.0 Mission

Candidate for ESA M3 launch window 2022/24

Heike Rauer and the PLATO Team

Institut für Planetenforschung, DLR, Berlin-Adlershof and Zentrum für Astronomie und Astrophysik, TU Berlin

The PLATO 2.0 Mission

From planet detection frequency towards planetary physics!

- > reveal the interior of planets and stars in large numbers
- detect planets over the whole sky, including terrestrial planets in the habitable zone
- provide accurate ages of planetary systems
- constrain planet formation and evolution models
- provide targets for atmosphere spectroscopy
- ➤ Boost stellar science, inputs for galactic science

Status – Super-Earth

Ground-based transit detections

space-based transit detections

How typical is our Solar System?

- Need to study the full planet mass range, down to Earth and smaller
- Need to include intermediate and large orbital distances

Planet diversity

Rocky and icy planets

Gas giants

A large sample of rocky and gassy planets with known densities and interior allows us to

- determine mean density gradients in planetary systems
- provides constrains on planet formation, depending on: stellar type, metallicity, environment, ...
- study the evolution of planets and planetary systems

Normalized mean small separation as a function of the mean large separation and evolutionary tracks (blue solid lines). Horizontal dotted lines are isochrones in 1 Gyr steps (White et al. 2011)

Asteroseismology mass and age of host stars

- 1. Large separations $\Delta_0 \propto \sqrt{\text{M/R3}}$
 - → mean density
- 2. Small separations d_{02}
 - \rightarrow probe the core \rightarrow age
- 3. Inversions + mode fitting
 - \rightarrow consistent ρ , M, age

Asteroseismology has been successfully applied to bright Kepler stars, showing how powerful this technique is.

PLATO will improve the achieved accuracies to:

- Uncertainty in Mass ≤ 2%
- Uncertainty in Age ~ 10%

The PLATO 2.0 Mission

Mission proposal for ESA M3 launch selection

The instrument:

32 «normal» cameras :
cadence 25 sec

2 «fast» cameras :

cadence 2.5 sec, 2 colours

pupil: 120 mm

dynamical range: 4 ≤ m_V ≤ 11 (16)

Accuracy:

An Earth around a Sun:

- radius up to 2%
- mass up to 10%
- age known to 10%

Field of View

The M2 baseline assumed 2 long pointing + step-and-stare phase

For M3: Other observing other strategies are possible, e.g.:

- Start with step-and-stare phase for large coverage in the early phase → >50% coverage
- Start at regions with interesting objects

Number of observed stars

		PLATO		Kepler
Noise level (ppm/h)	m _v	2 long pointings	2 long pointings + step-and-stare	Fixed <i>Kepler</i> field
8	8	>1000	>3000	30
34	11	22000	85000	1300
80	13	267000	1000000	25000

astroseismology

Summary: PLATO 2.0 (2022/24 launch)

Key motivation: understand planet formation and perform planetary science

Summary: PLATO 2.0 (2022/24 launch)

Key motivation:understand planet formation and perform planetary science

What PLATO will provide for a large number of planets:

- planets with accurately characterized bulk properties, wide parameter range, including Earths in the HZ of solar-like stars
 - Stellar masses and ages through astroseismology
 - RV-follow-up (accurate planet masses) also for terrestrial planets
- Survey of the physical properties of planets and planetary systems
- future spectroscopy of a sample of bright targets!

Summary: PLATO 2.0 (2022/24 launch)

Key motivation: understand planet formation and perform

What PLATO will provide for a large num

- planets with accurately charanteer range, including the HZ of solar-like stars
 - Stellar masse inrough astroseismology
 - RV-follogiate planet masses) also for terrestrial planet.
- physical properties of planets and planetary
- future spectroscopy of a sample of bright targets!

PLATO 2.0 Workshop

Attend the

PLATO 2.0 Workshop

July 29 - 31, 2013

At: ESTEC, Noordwijk, NL

Announcement and call for registration will follow shortly.