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Small CoRoT candidates 
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A typical problem

Santerne, Díaz, Moutou et 
al. (2012)
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A typical problem

Santerne, Díaz, Moutou et 
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Is the transit due to a planet or to a 
diluted binary?
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A typical problem

Compare model Mpla (planet) with MBEB (bkg eclipsing binary).

Santerne, Díaz, Moutou et 
al. (2012)

Is the transit due to a planet or to a 
diluted binary?
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False Positives

Undiluted scenarios Diluted scenarios

BLENDER 11

Fig. 7.— Top: Light curve of Kepler-9 c with the best fit blend
model for the case of contamination by a foreground eclipsing pair
with a circular orbit in which the tertiary is a planet. The pair
consists of an M2 dwarf (0.56M!, 0.58R!) and a 0.91RJup com-
panion 450 pc in front of the primary, which is at 750 pc. This
fit is statistically indistinguishable from best fit planet model, also
shown for reference. Bottom: Measured colors for KOI-377 (dots)
compared with the predictions from the blend model in the top
panel. A small amount of extinction (0.15 mag kpc−1) has been
included in these predictions. The results without considering ex-
tinction differ little, and are shown with dotted lines. The color
measurements clearly rule out such a blend.

mimic the 19-day and 39-day signals in the light curve of
KOI-377. Larger-mass secondaries would not be as red
and still allow for good fits to the photometry, but they
are intrinsically brighter and would be recognized more
easily.
The above simulations have all assumed circular orbits

for the blended eclipsing binaries or star-planet pairs,
which is not necessarily realistic given the relatively long
periods of Kepler -9 b and c. Eccentricity affects the
speed of the secondary and tertiary in their relative or-
bit, and therefore can change the duration of the tran-
sit, making it shorter or longer than in a circular orbit,
depending on the orientation (longitude of periastron,
ω). It also changes the impact parameter, all else being
equal. And finally, it shifts the location of the secondary
eclipse. The magnitude of these effects is illustrated in
Figure 8 for eccentricities between 0.1 and 0.7. The most
important effect for our purposes is on the transit dura-
tion. Given a fixed (measured) duration, eccentric or-
bits may allow blends with smaller or larger secondary
stars than in the circular case to still provide satisfactory
fits to the light curve, effectively increasing the pool of
potential false positives. The limiting cases correspond
to ω = 90◦ and 270◦, in which the line of apsides is
aligned with the line of sight and the transit occurs at
periastron (accommodating larger secondaries) or apas-
tron (smaller secondaries), respectively. Extensive simu-
lations for these two extreme situations show that allow-
ing for eccentric orbits does not change our conclusions

Fig. 8.— Effect of eccentricity on the duration of transits rela-
tive to the circular orbit case (∆/∆circ), on the impact parameter
(b/bcirc), and on the displacement of the secondary eclipses relative
to phase 0.5 (φsec − 0.5), all shown as a function of the longitude
of periastron ω. The different curves correspond to eccentricities
from 0.1 to 0.7 in steps of 0.1.

regarding hierarchical triple systems, background eclips-
ing binaries, or background star-planet scenarios. We
show this for the latter blend category in Figure 9, illus-
trated for the case of orbits with eccentricities of 0.3 and
0.5, and ω = 90◦. Comparison with Figure 6 indicates
that in both cases the blends are still bright enough that
we would have seen signatures of them in the spectra of
KOI-377. Larger eccentricities of e = 0.7 result in secon-
daries that are brighter still. For eccentric orbits oriented
such that transits take place at apastron (ω = 270◦), we
only find acceptable fits to the light curves for eclipsing
star-planet pairs that are in the foreground (and involve
smaller stars). However, as was the case for circular or-
bits, those blends are either too bright, too red, or both,
and are thus also excluded.
The above, fairly exhaustive exploration of parame-

ter space with BLENDER allows us to conclude that no
configuration involving an eclipsing binary (or an eclips-
ing star-planet pair), either in the foreground or in the
background, is able to provide a reasonable explanation
for the signals of Kepler -9 b and c (see Table 5 for a
summary of the configurations tested, and the results).
Many scenarios lead to light curves that match the de-
tailed shape of the transit events, but none are simul-
taneously consistent with all of the other observational
constraints. This includes spectroscopy, high-resolution
imaging, centroid measurements, and photometry (col-
ors). Therefore, even ignoring the evidence from TTVs,
these results fully support the planetary nature of these
objects and demonstrate the usefulness of BLENDER for
validating transiting planet candidates from Kepler.

K
ep

le
r-

9d
 

(T
or

re
s e

t a
l.,

 2
01

0)



Planet Validation (to the 
rescue)

• Use all the information in the transit 
LC to constrain possible false 
positives (FPs).

• Add additional constrains from other 
datasets: RV, AO, multi-band 
photometry, ... Fressin et al. (2011)

M2 = 1.0 Msun; d = 5mag

Spitzer

Kepler-10 c



Planet Validation (to the 
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Fressin et al. (2012)



Planet Validation (to the 
rescue)

• Evaluate relative occurrence of planets 
to surviving blends.

• use Galactic structure 
models or catalogs.

• prior knowledge on planet 
occurrence rate.

Fressin et al. (2012)
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Planet Validation (to the 
rescue)

• Evaluate relative occurrence of planets 
to surviving blends.

• use Galactic structure 
models or catalogs.

• prior knowledge on planet 
occurrence rate.

• Validate planet if 

P(planet) >> P(FP)

• Result: new planet (but no mass 
measurement). 

Fressin et al. (2012)



Planets without mass

CoRoT-7 b



BLENDER: room for 
improvement

BLENDER: the Kepler solution to planet validation

 External constraints not considered rigorously (no 
self-consistent fit).

 Use of “home-made” statistics. Might work but not 
yet proven. Mix of frequentist and bayesian approach.

 Grid evaluation of likelihood

Limited number of parameters. 

Impractical for large samples.



Our solution...

More, better, faster, ... and independently



Bayesian Basics

Dı́az et al.: PASTIS.

etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

Bayes’ theorem, and all the other rules just discussed, hold for PDFs, with all sums
replaced by integrals. For example, the global likelihood for model M can be calcu-

lated with the continuous counterpart of Equation (3.7),

pðDjMÞ¼
Z

d! pð!jMÞpðDj!;MÞ¼LðMÞ: (3:8)

In words, the global likelihood of a model is equal to the weighted average likelihood

for its parameters. We will utilize the global likelihood of a model in Section 3.5 where
we deal with model comparison and Occam’s razor.

If there is more than one parameter, multiple integrals are used. If the prior density

and the likelihood are assigned directly, the global likelihood is an uninteresting
normalization constant. The posterior PDF for the parameters is simply proportional

to the product of the prior and the likelihood.
The use of Bayes’ theorem to determine what one can learn about the values of

parameters from data is called parameter estimation, though strictly speaking,
Bayesian inference does not provide estimates for parameters. Rather, the Bayesian

solution to the parameter estimation problem is the full posterior PDF, pð!jD;MÞ, and
not just a single point in parameter space. Of course, it is useful to summarize this
distribution for textual, graphical, or tabular display in terms of a ‘‘best-fit’’ value and

‘‘error bars.’’ Possible summaries of the best-fit values are the posterior mode (most
probable value of !) or the posterior mean,

h!i¼
Z

d! ! pð!jD;MÞ: (3:9)

If the mode and mean are very different, the posterior PDF is too asymmetric to be
adequately summarized by a single estimate. An allowed range for a parameter with

probability content C (e.g., C ¼ 0:95 or 95%) is provided by a credible region, or
highest posterior density region, R, defined by

Z

R
d! pð!jD;MÞ¼C; (3:10)

with the posterior density inside R everywhere greater than that outside it. We some-
times speak picturesquely of the region of parameter space that is assigned a large

density as the ‘‘posterior bubble.’’ In practice, the probability (density function)
pð!jD;MÞ is represented by a finite list of values, pi, representing the probability in

discrete intervals of !.
A simple way to compute the credible region is to sort these probability values in

descending order. Then starting with the largest value, add successively smaller pi
values until adding the next value would exceed the desired value of C. At each step

keep track of the corresponding !i value. The credible region is the range of ! that just

44 The how-to of Bayesian inference

Hypothesis must be described by a model M

Model comparison is done based on the odds ratio

Bayes’ factorModel prior ratio
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).
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44 The how-to of Bayesian inference

Hypothesis must be described by a model M

Model comparison is done based on the odds ratio

Bayes’ factorModel prior ratio

• Hi can also be thought of as a model with a certain value of a given 
parameter. In that case, {Hi} is an infinite, continuous set. 

•Methods exist to take samples from the posterior when the computation 
cannot be done analytically. MCMC is one of these methods.



Planet Analysis and Small 
Transit Investigation Software

12

Light curves
(Kepler, CoRoT, Spitzer, ...)

Radial velocities
RV, Bisector, FWHM
(HARPS, SOPHIE)

Spectral Energy 
Distribution

(SDSS, 2MASS, WISE, ...)

Parameters for 
scenario:

- planet
- binary
- triple

-...

Model prior
(Binaries prop., planets prop., ....)

developped par J.-M. Almenara, R. Díaz & A. Santerne
Díaz et al. (in prep.), Santerne et al. (in prep.)

P(Hi|D, I)

P(Hj |D, I)
=

P(Hi|I)
P(Hj |I)

· P(D|Hi, I)

P(D|Hj , I)

MCMC / 
PCA

Stellar evolution 
tracks, SAM
(Dartmouth, 
Geneva, ...)



• Markov Chain Monte Carlo.
• Efficient sampling of the parameter posterior. No time wasted on 

regions of poor fit.
• Practically unlimited number of parameters (current record: 68 for 

CoRoT-7; see Susana’s talk on Thursday).

• Caveats (convergence, multiple minima, correlations) dealt with.

Planet Analysis and Small 
Transit Investigation Software
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Fig. 4. Illustration of the construction of the cross-correlation function. Diagrams on

the left represent the stellar spectrum (dashed lines) and the binary mask (solid lines,
transmission zones depicted as hatched areas). Diagrams on the right show the result of

the cross-correlation process. Courtesy of Claudio Melo.

searches was made by Campbell et al. (1988), who used a hydrogen fluoride (HF)
cell (Campbell & Walker 1979). At present, all planet search programs based on
this technique use an iodine cell and the technique is commonly referred to as the
iodine cell technique.

Instrumentally, the iodine cell technique is easily implemented on any existing
slit spectrograph. The main complication of the method resides in the Doppler
analysis. In practice, spectra taken through the iodine cell are broken up into

Mask: F0, G2, K0, K5, M5, ...

Melo (2001)
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CCF diagnosis

(v sin i)1 = (v sin i)2(υ sin i)1 < (υ sin i)2 (υ sin i)1 > (υ sin i)2

Santerne et al. (in prep.)



CoRoT-22
Moutou, C. et al.: Transiting exoplanets from the CoRoT space mission:

Fig. 1. CoRoT light curve resulting from a combination of the green and red light curves and after removal of

instrumental effects. The gaps correspond to low-quality data that are removed for the analysis.

Table 2. Summary of the complementary observations

Instrument Date Data type

Euler on-off seeing-limited differential photometry

IAC80 on-off seeing-limited differential photometry

NACO on-off AO imaging

SOPHIE 3 radial-velocity measurements

HARPS 17 radial-velocity measurements

HIRES 10 radial-velocity measurements

The periodogram of the light curve after removal of the transit series is searched for periodic

out-of-transit variations. No significant peak is found, hence we cannot estimate the stellar rotation

period from the light curve.

The transit ephemeris is estimated by a linear fit of the transit center times determined by a

complete analysis of each transit using the Mandel & Agol (2002) formalism. The derived period is

9.7566 ± 0.0012 days. Figure 3 shows the light curve folded at this orbital period around the transit.

Normalisation included the contamination coefficient (see section 3). The final scatter is 403 ppm

in the folded white light curve, out of transit. Also shown are the transits in the red channel and

sum of green + blue channels, the latter being more noisy. Transits are detected independently in

the three channels with depths that are compatible within better than 2σ.

Applying the formalism of Giménez (2006) and convergence algorithm AMOEBA (Press et al.

1993), we estimated the best-fit parameters of the transit assuming the orbit is circular. Errors are

estimated after the bootstrap procedure as described in Alonso et al. (2008).

The parameters derived from the fit are summarized in Table 4.

3. Target’s environment

Figure 2 shows the stellar neighbourhood of CoRoT-22 and the size and position of the CoRoT

aperture mask. This mask is optimised for on-board photometry taking into account information

on the stellar environment, in order to reduce the noise due to jitter and false positive occurence.

The three color channels are depicted in Figure 2 (left) by vertical lines in the mask. The red+green

channels sum up 5 out to 8 pixels along the dispersion axis. The flux arising from neighbour stars

and the knowledge of the inflight PSF allow to precisely estimate the contamination factor in all

4

Moutou, C. et al.: Transiting exoplanets from the CoRoT space mission:

Fig. 3. Top: CoRoT folded transit with the best-fit transiting-planet model superimposed. The residuals to the

models are shown below. Bottom: the red and blue+green light curves of CoRoT-22 are shown; although the

blue+green light curve is more noisy, both transits have similar depths within 1.5-σ.

conditions. The transit on the main target is marginally detected with an egress up to 60 minutes

earlier than predicted, well inside the expected 1-σ error of 1h 24min at the epoch of this obser-

vation. Again, all neighbouring stars can be excluded as contaminating eclipsing binaries. Further

observations could be planned to confirm this result.

6

LRc02_E1_0591
P = 9.76 d

depth = 0.2 %
V = 13.9 (color LC)

Moutou, Almenara, Alonso et al.
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conditions. The transit on the main target is marginally detected with an egress up to 60 minutes
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vation. Again, all neighbouring stars can be excluded as contaminating eclipsing binaries. Further

observations could be planned to confirm this result.
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Moutou, C. et al.: Transiting exoplanets from the CoRoT space mission:

Fig. 7. Radial-velocity data set folded at the period detected by CoRoT: HARPS are red filled points, HIRES

are green open diamonds, SOPHIE are blue open squares. Superimposed is a model compatible with the data:

a circular orbit with semi-amplitude 8 m/s.

shown that the odds ratio between a planetary scenario and a false positive scenario could be de-

termined to greatly favor the former (eg Howell et al. (2010); Torres et al. (2011); Fressin et al.

(2011)). This involves simulations of other common scenarii as background eclipsing binaries

(BEB) or triple systems. In this study, we have performed such simulations, in addition to com-

bining observational constraints from: adaptive-optics imaging, radial velocity time series, line

bisector time series, and the three-colour light curve of CoRoT. In the following, we call ”star 1”

the primary target, ”star 2” and ”body 3” the components of a putative blended eclipsing system.

The considered scenarios are:

– A: Background/foreground eclipsing binary (BEB): there is a binary star in the line of sight of

CoRoT-22 contaminating the CoRoT aperture.

– B: A derivative of the previous configuration is the case where the transiting object of star 2 is

a planet, which requires a different modeling of the transit light curve but does not modify the

constraints for star 2 as implied from ground-based imaging or RV data.

– C: Triple system: star 1 is bound to star 2 which is transited by a companion (body 3) at the

CoRoT ephemeris.

– D: In all cases involving three stars, the period can be twice the one observed by CoRoT, if both

stars have the same mass.

11
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CoRoT-22 - AO
Moutou, C. et al.: Transiting exoplanets from the CoRoT space mission:

Fig. 2. Left: Simulated image of the field surrounding the main target convolved by the PSF of CoRoT. Right:

Field around the target CoRoT-22 in the i� filter as observed with CoRoT (top), with INT/WFC (middle),

and in the J band as observed with VLT/NACO (bottom). The rectangular region shows the aperture used for

CoRoT photometry in the various spatial scales.

three chanels (see method described in Bordé et al. (2010)).

The derived values for flux contamination are 1.9 ± 0.5 % for the white channel. Contamination is

larger in blue (6.2 ± 1.4 %), moderate in green (4.1 ± 1.3 %) and low in red (1.0 ± 0.3 %).

Numerous complementary observations were conducted to resolve this transiting scenario.

They are summarised in Table 2 and commented in the following sections.

4. Ground-based photometry

Short imaging sequences from small-size telescopes have been obtained for the sake of confirming

the occurrence of the transit on the V=13.9 magnitude target. The difference in spatial resolution

between the CoRoT PSF and the image obtained from ground-based telescopes is illustrated in

Figure 2.

A first observation of CoRoT-22 was done with the IAC 80-cm telescope in Tenerife (Spain)

on 11 June 2010 (on-transit) during a 5-hour long sequence in order to account for the ephemeris

precision. The shallow transit is not detected on the main target nor on any of the detected sur-

rounders.

A second observation was carried out at the 1.2m telescope Euler at La Silla (Chile) on 28

August 2010 (on-transit). Off-transit observations were performed the following night in similar

5

Moutou, Almenara, Alonso et al.

Moutou, C. et al.: Transiting exoplanets from the CoRoT space mission:

Fig. 5. PSF profile around CoRoT-22 estimated from the NACO out-of-transit data.

carded two measurements, one taken in the EGGS mode and one with a shortened exposure time

and thus a low signal-to-noise ratio. None of them are affected by background light. The velocities

are obtained by cross-correlating the spectra with a weighted numerical mask of G2 spectral type

and by fitting the cross-correlation function with a Gaussian model. Individual errors with HARPS

are on average 10 m/s and the velocities span a range of 42 m/s, with a standard deviation of 11

m/s. Average signal-to-noise ratio of the spectra is 15. In addition, ten measurements were col-

lected from June to August 2010 with the Keck1/HIRES spectrograph5 as part of the NASA key

science project in support of the CoRoT mission. HIRES was used with the red cross-disperser and

the I2-cell. We used the 0.861” wide slit that leads to a resolving power of 50,000. The velocities

were derived with the Austral Doppler code (Endl et al. 2000).

Table 3 and Figures 6 and 7 show the radial velocities obtained with the three spectrographs.

The velocity time series shows no significant variation at the expected CoRoT ephemeris, at a

level of about 10 m/s. The data set was then analysed for deriving an upper limit on the mass of

the potential companion. We checked the dependency on eccentricity of the maximum RV semi-

amplitude consistent with the data. It is a known fact that orbits with large eccentricities are easily

found in poorly-sampled data; such orbits are however very unlikely, especially those with e > 0.6

in the period range of the transiting body, about 10 days. Note that the average eccentricity for

this period range is 0.2. Figure 9 shows the maximum semi-amplitude allowed by the HARPS

and HIRES combined data at the 3-σ level, when the orbital eccentricity is varied from 0 to 1.

Two independent algorithms were used and compared: the genetic algorithm yorbit usually used

in the analysis of HARPS data (diamonds with 1 − σ error bars in the figure) and a simulation

5 Keck programs : N035Hr, N143Hr 260 and N095Hr
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

Odds ratio
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the plausibility of preposition X, given that Y is true (see Jaynes
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and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
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pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
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given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
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where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
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posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

H1 = “The transits observed in CoRoT-22 are produced by an 
extrasolar planet in orbit.”

H2 = “The transits observed in CoRoT-22 are produced by an 
unresolved background eclipsing binary.”

Odds ratio
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2
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p(Mpla|I) = 0.2



Odds ratio

Dı́az et al.: PASTIS.

etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

p(Mbin|I) = 0.5

SRa05_E2_4016



Odds ratio

Dı́az et al.: PASTIS.

etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

p(Mbin|I) = 0.5
p(Mpla|I) = 0.2

SRa05_E2_4016



Odds ratio

Dı́az et al.: PASTIS.

etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

p(Mbin|I) = 0.5

p(D|Mpla)/p(D|Mbin) =3
p(Mpla|I) = 0.2
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

Opla;bin = p(pla)/p(bin) = 1.2

p(Mbin|I) = 0.5

p(D|Mpla)/p(D|Mbin) =3
p(Mpla|I) = 0.2
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

Opla;bin = p(pla)/p(bin) = 1.2

p(Mbin|I) = 0.5

p(D|Mpla)/p(D|Mbin) =3
p(Mpla|I) = 0.2
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On-going developments:
Stellar spectrum constraints ?
J. Cabrera et al.: Transiting exoplanets from the CoRoT space mission

Fig. 3. Detail of the Keck spectrum of CoRoT-13 around the pressure-sensitive Ca ii line at 6162 Å. The synthetic spectrum is
shown with a dashed line. Spectral lines used in the abundance analysis are marked with solid vertical lines while the other spectral
lines are marked with dotted lines.

3.3. Radial Velocity measurements

Precise radial velocity measurements of CoRoT-13 were ob-
tained with the HARPS spectrograph between the nights of
November 22nd, 2009 and February 15th, 2010 (ESO program
184.C-0639). HARPS is a cross-dispersed echelle spectrograph
fiber-fed from the Cassegrain focus of the 3.6 m telescope at La
Silla Observatory, Chile (Mayor et al. 2003). Fifteen spectra with
a spectral resolution R ≈ 115 000 were obtained using exposure
times of 3600 s, and setting one of the two available fibers on
the sky in order to monitor the presence of moonlight and to ob-
tain an optimal sky background subtraction, which is important
for faint targets such as this. The signal-to-noise ratios per pixel
at 5500 Å of these observations range from 7.1 to 11.7. Th-Ar
calibrations were obtained at the beginning of each night, which
has been shown to be enough to obtain the required precision,
due to the high stability of the instrument.

The spectra were reduced and extracted using the HARPS
pipeline, and the radial velocity was measured on each extracted
spectrum by means of a weighted cross-correlation (see Baranne
et al. 1996) with a numerical mask corresponding to a G2 star.
The resulting cross-correlation functions (CCFs) were fit by
Gaussians to get the radial velocities. The measured values are
listed in Table 4 and shown in Fig. 5, together with the best fit
orbital solution (see below). During some of the observations,
the star fiber was contaminated by moonlight. In those cases, if
the peak of the CCF produced by moonlight was expected to be
close to the measured speed of the target, a correction was ap-
plied using the fiber which recorded the sky (see Bonomo et al.
2010, in preparation). Those points are shown as white circles
in Fig. 5 and we added quadratically 30 m s−1 to the uncertainty
estimated from the CCF, in order to account for possible system-
atic errors introduced by the moonlight correction.

The orbital solution was found by χ2 minimization, with the
period and epoch of inferior conjunction (when radial velocity
is zero after removal of the systemic velocity) being fixed to the
values provided by the CoRoT ephemeris (which are calculated
by fitting a linear regression to the center position of the indi-
vidual transits). The eccentricity of the orbit was a free parame-

ter at first, but since the best fit solution was compatible with a
circular orbit at the two-σ level (the three-σ upper limit to the
eccentricity is 0.145), we decided to fix it to e = 0 for the de-
termination of the rest of the parameters and their uncertainties.
Figure 5 shows the RV measurements, phased to the CoRoT pe-
riod, together with the best fit circular model and the residuals;
the obtained parameters are listed in Table 6. The resulting value
of χ2 is 8.2 for 13 degrees of freedom, and the rms of the resid-
uals is 20.2 m s−1, which is compatible with what should be ex-
pected based on the median of the RV uncertainties, 21.2 m s−1.
These facts suggest that the circular model – with the obtained
parameters– adequately describes the available data.

With fixed ephemeris and eccentricity set to zero, the fitting
problem is reduced to a linear least-square minimization with
two free parameters. The uncertainties reported in Table 6 are
therefore estimated by means of the covariance matrix, which
has a covariance term of 6.48 m2 s−2. However, stellar activity
and other long-term phenomena can produce correlated noise in
the observations and hence render the above estimation of the
uncertainties invalid. In order to explore this we used the Prayer
Bead method (see, for example, Désert et al. 2009; Winn et al.
2009), i.e. we performed a cyclic permutation of the residuals
of the best fit curve and fit the model again. We repeated this
for every possible shift and measured the standard deviation of
the obtained parameters. We also performed a similar analysis
but randomly re-ordering the residuals rather than shifting them.
In this way, we constructed 10000 synthetic data sets that were
used to fit our model again. In both cases, the obtained dispersion
of the parameters were smaller than the error bars reported in
Table 6.

The bisector analysis for these data is shown in Fig 6, where
the uncertainty in the bisector span velocity has been set to twice
that of the corresponding radial velocity. The bisector span ve-
locities do not show any clear dependence with radial velocity
values and the Pearson correlation coefficient between these two
magnitudes is around 0.15, which is a sign of lack of corre-
lation. This fact clearly indicates that the measured RV varia-
tions do not originate from changes in the shape in the CCF
as would be the case if the system consisted of a background
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Fig. 7. Folded transit of CoRoT-13b, best fit and its residuals
using the values of solution A in Table 5.

(Sing 2010 gives 0.156± 0.022) the agreement between theoret-
ical predictions and measurements is withing 2 sigma error bars,
which is satisfactory. We accept solution A as the definitive one
(the fit is shown in Fig. 7).

5. Discussion

5.1. Stellar properties

The spectroscopic analysis of CoRoT-13 reveals a G0V star with
an age between 0.12 and 3.15 Gyr, solar metallicity ([M/H] =
+0.01 ± 0.07), a high relative abundance of lithium (+1.45 dex),
and a low activity level according to the analysis of activity in-
dicators such as the H-K Ca ii lines (where no emission is de-
tected).

The rate of lithium depletion of solar like stars is related to
the age of the star and to the depth of the convective zone, as it
is destroyed at a temperature of approximately ∼ 2.5 · 106 K in
the radiative region of a star (Chaboyer 1998). Given the spec-
tral type of CoRoT-13, we expect a lower lithium depletion rate
than in solar analogs (Castro et al. 2009). Using the value of the
Li i abundance, we compute a log n(Li) = 2.55. From Fig. 7 of
Sestito & Randich 2005 and with the value of the effective tem-
perature (Teff = 5945 ± 90 K) we estimate the age of the star
in the range 300 Myr to 1 Gyr, consistent with the range from
the evolutionary models. In a recent paper, Israelian et al. (2009)
claim a lithium depletion in solar like stars with orbiting planets,
although it is not clear that previous observations support this
conclusion (Meléndez et al. 2009b). CoRoT-13 is not depleted
in lithium, albeit we call the attention to the fact that the effec-
tive temperature of this star is slightly higher than the upper limit
for depletion given in Israelian et al. (2009).

The v sin i value indicates a rotational period of the star of
around 13 days1. Gyrochronology (Barnes 2007) could be used
as an age estimator. Using the improved gyrochronology rela-
tions from Mamajek & Hillenbrand (2008) we derived a gy-
rochronologic age of 1.66 Gyr well within the range of age given
by evolutionary models. No emission feature is seen at the bot-
tom of the Ca ii H and K lines nor in the Hα line showing that the
star belongs to the inactive population with log R

�
H

K < −5.0.
We thus didn’t derive any chromospheric age for the star. Other

1 a lower limit, as the value of sin i for the spin axis of the star is
unknown.

Table 6. Planet and star parameters.

Ephemeris

Planet orbital period P [days] 4.035 190 ± 0.000 030
Primary transit epoch Ttr [HJD-2 450 000] 4 790.809 1 ± 0.000 6
Primary transit duration dtr [h] 3.14 ± 0.01

Results from radial velocity observations

Orbital eccentricity e 0 (fixed)
Radial velocity semi-amplitude K [ m s−1] 157.8 ± 7.7
Systemic velocity Vr [ km s−1] 22.4536 ± 0.0060
O-C residuals [ m s−1] 20.2

Fitted transit parameters

Scaled semi-major axis a/R∗ 10.81 ± 0.32
Radius ratio k = Rp/R∗ 0.090 9 ± 0.001 4
Quadratic limb darkening coefficientsa

u+ 0.81 ± 0.07
u− −0.09 ± 0.09

Impact parameterb
b 0.374 ± 0.054

Deduced transit parameters

M
1/3
∗ /R∗ [solar units] 1.014 ± 0.030

Stellar density ρ∗ [ g cm−3] 1.468 ± 0.131
Inclination i [deg] 88.02+0.34

−0.36

Spectroscopic parameters

Effective temperature Teff [K] 5 945 ± 90
Surface gravity log g [dex] 4.30 ± 0.10
Metallicity [Fe/H] [dex] 0.01 ± 0.07
Stellar rotational velocity v sin i [ km s−1] 4 ± 1
Spectral type G0V

Stellar and planetary physical parameters from combined analysis

Star mass [M⊙] 1.09 ± 0.02
Star radius [R⊙] 1.01 ± 0.03
Surface gravity log g [dex] 4.46 ± 0.05
Age of the star t [Gyr] 0.12 − 3.15
Distance of the system [pc] 1 060 ± 100
interstellar extinction AV [mag] 0.20 ± 0.10
Stellar rotation period Prot [days] 13+5

−3
Orbital semi-major axis a [AU] 0.0510 ± 0.0031
Planet mass Mp [MJup]c 1.308 ± 0.066
Planet radius Rp [RJup]c 0.885 ± 0.014
Planet density ρp [ g cm−3] 2.34 ± 0.23
Planet surface gravity log g [dex] 3.62 ± 0.03
Average surface temperatured

Tp [K] ∼ 1 700

Notes. (a)
I(µ)/I(1) = 1 − µ + uaµ + ub(1 − µ)2, where I(1) is the

specific intensity at the center of the disk and µ = cos γ, γ being the
angle between the surface normal and the line of sight; u+ = ua + ub

and u− = ua − ub. (b)
b = a·cos i

R∗
(c) Radius and mass of Jupiter taken

as 71 492 km and 1.8992 × 1030 g, respectively (Lang 1999). (d) Zero
albedo equilibrium temperature for an isotropic planetary emission.

G0V stars are found with similar rotation rates and low activity
levels (Noyes et al. 1984).

We have looked for signs of stellar rotation in the light
curve (LC) observed by CoRoT to make a comparison with the
clear signs of spot modulation found in the cases of CoRoT-2b
(Lanza et al. 2009b), CoRoT-4b (Lanza et al. 2009a), CoRoT-
6b (Fridlund et al. 2010) or CoRoT-7b (Lanza et al. 2010).
The Lomb-Scargle periodogram of the LC, once the planetary
transits have been removed and the hot-pixel events have been
treated, shows indeed a significant broad peak around 77 days;
but not any significant peak at the expected rotational frequen-
cies. The 77 days period is comparable with the length of the
run (115 days), so it might be that we are observing an irregular
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• False positives, a classic nuisance in transit surveys.

• At present, planet validation is the only way to establish the nature of 
the smallest transit candidates discovered.

• A self-consistent analysis of all available data backed by rigorous 
statistics is needed.

• PASTIS provides an efficient way to validate planet candidates.

• First tests show power of bayesian approach. Test with more realistic 
error distributions under way.

• Prior dependence not fully considered by estimation methods. Use 
thermodynamic integration. Ongoing study.

Conclusions & Perspectives



• PASTIS: new types of data to be included in the future: centroid, 
imaging, RM effect (ongoing), Spectral analysis (ongoing), etc. 

• Validate a large number of CoRoT and Kepler small-size 
candidates to:

• Obtain a measurement of the False Positive Ratio (useful for 
statistical studies based on candidates alone, see Howard et 
al. 2012; cf. Santerne et al. 2012).

• Identify promising candidates for the next generation of 
instruments (ESPRESSO).

• Planet validation will provide support for future missions as 
PLATO.

Conclusions & Perspectives
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★ Observations and data modeling
★ Fit method and model comparison
★ Stellar multiplicity
★ Planetary systems
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