Red Giants in seismo and exo fields

J. Montalban & CoRoT Red Giants team

Obs. Paris-Meudon, IAS, INAF-Brera, INAF-Roma, Univ. Birmingham, Univ. Vienna, KUL, IAP, Univ. Amsterdam & Univ. Liege

CoRoT detects and confirms the presence of non-radial solar-like oscillations In several hundred G-K Red Giants

De Ridder et al. Nature 2009

Echelle diagram with ridges corresponding to radial and non-radial modes

Red Giants in CoRot

Seismo field

18 G-K Red Giants

- Stellar parameters •
- Chemical abundances
- Check of scaling relations

Exo field: several thousands

- Statistical studies
- Stellar population studies
- Structure and evolution of the Milky

Red Giants in CoRoT

RUN	N RGs	RG with oscillations	
LRc01	3988	1400	Mosser et al. , Hekker et al, Kallinger et al.
LRc02	3234	200	Mosser&Baudin
LRc03	1955	60	Mosser&Baudin
LRc04	576		
LRc05	2148		
LRc06	2205		
LRc07	3722		
LRc08	1525		
LRc09	1941		
IRa01	1458		
LRa01	1698	400	Mosser et al. 2010 A&A
LRa02	1481	200	Mosser&Baudin
LRa03	755	100	Mosser&Baudin
LRa04	660		
LRa05	664		
LRa06	1099		

Red Giants in CoRot

Seismic parameters in exo RGs

 $\langle \Delta v \rangle \simeq (0.280 \pm 0.02) v_{\text{max}}^{0.75 \pm 0.01}$

Mosser et al. A&A 2010, see also Hekker et al. A&A 2009, Kallinger et al. A&A2010

Seismic parameters in exo RGs

 $\nu_{max} \sim [30-40] \ \mu Hz$

 $\langle \Delta v \rangle \sim 4 \ \mu Hz$

Mosser et al. A&A 2010, see also Hekker et al. A&A 2009, Kallinger et al. A&A2010

Characterization of exo RG population

□ CoRoTLRc01 (I=37, b=-7) $11 < m_v < 15$

TRILEGAL

Pop. Synthesis software

+

$$\Delta \nu \simeq \sqrt{\frac{M/M_{\odot}}{(R/R_{\odot})^3}} \Delta \nu_{\odot}$$

$$\nu_{\rm max} \simeq \frac{M/M_{\odot}}{(R/R_{\odot})^2 \sqrt{T_{\rm eff}/T_{\rm teff}}} \nu_{\rm max\odot}$$

Population study of CoRoT RedG

Sample dominated by Red Clump stars!

 $v_{max} \sim 35 \mu Hz$ $\Delta v \sim 4 \mu Hz$ Miglio et al. 2009 A&A

Characterization of exo RG population

CoRot LRc01 LRa01

$$\nu_{\rm max} \simeq \frac{M/M_{\odot}}{(R/R_{\odot})^2 \sqrt{T_{\rm eff}/T_{\rm teff\odot}}} \nu_{\rm max\odot}$$

$$\Delta\nu \simeq \sqrt{\frac{M/M_{\odot}}{(R/R_{\odot})^3}}\Delta\nu_{\odot}$$

Mosser et al. 2010 A&A

Seismic parameters in exo RGs

HR Diagram & $\Delta v - v_{max}$

 $\Delta P \sim 40-80s$

ΔP ~ 40-75s

ΔP ~ 20-60s

ΔP ~ 20-55s

ΔP ~ 180-240s

Echelle Diagram : RC vs RGB M=1.5 Msun

Seismic parameters in exo RGs

Mosser et al. 2010, A&A

Period spacing in red giants

Ensemble seismology of G-K giants

average seismic parameters:

Ensemble seismology of G-K giants

$$\log d = 1 + 2.5 \log T_{\rm eff} + \log \nu_{\rm max} - 2 \log \Delta \nu + 0.2 (m_{\rm bol} - M_{\rm bol})$$

Ensemble seismology of G-K giants

3D map of G-K giants

3D map of G-K giants

Early results: differential

RG seismo & structure and evolution of the Milky Way

To understand the mechanisms involved in the formation and evolution of the Galaxy, information on: KINEMATICS, CHEMISTRY, LOCATION and AGE of the stars in different regions of the Milky Way are needed.

seismology of giants in CoRoT and *Kepler* fields

chemo-dynamical constraints from spectroscopic analyses Age-metallicity Age-RV gold standard for current and future surveys of the Milky Way

"Red Giants as Probes of the Structure and Evolution of the Milky Way", ApSS, Rome 2010

Structure and evolution of the Milky Way : colab. & surveys

APOGEE

- H-band survey of Galactic populations (H < 12.5)
- 100,000 stars (80% red giants)
- R~22500, S/N=100
- Chemical abundances (0.1dex) 15 elements – including : C, N, O, Na, Mg, Ca, Mn, Fe, Co, Ni
- Velocity error= 0.5 km/s
- Targeted from 2MASS

Already observed ~ 420 CoRoT RGs

CoRoT => logg to APOGEE APOGEE => [Fe/H]

Under Discussion

SDSS 2.5-meter telescope

at the Apache Point Observatory, NM Image Credit: Sloan Digital Sky Survey

Structure and evolution of the Milky Way : collab. & surveys

HERMES-GALAH : Galactic archaeology with HERMES

HERMES multi-object high-resolution spectrometer on the Anglo Australian Telescope to measure abundances for up to 30 elements in about a million stars.

Already observing LRa01/c01 targets during commission time

GAIA-ESO survey:

Gaia-ESO Public Spectroscopic Survey, a 300-night survey of all Galactic Stellar Populations, using FLAMES (both GIRAFFE and UVES) on the VLT's Unit Telescope 2 (UT2).

So far, only 15 targets for calibration of their pipeline

Structure and evolution of the Milky Way : colab. & surveys

ESO proposal :Galactic archaeology: mapping and dating stellar populations by combining CoRoT photometry of red giants

with spectroscopy => 1500 RedG in LRc01 with FLAMES 180 RedG in LRc01 with UVES

Stromgren photometry available for IRa01, LRc01, LRa01, LRc02,LRc03, LRc04, SRc01, LRa03,SRa01, SRa02, LRa02,LRc05, LRc06 Hbeta for LRc01, LRc02,LRc03 (I. Ribas, L. Ballaguer, C. Maceroni) Under analysis

Red Giants in CoRot

RUN	N RGs	RG with oscillations	
LRc01	3988	1400	Mosser et al. 2010 A&A
LRc02	3234	184	Mosser&Baudin
LRc03	1955	60	Mosser&Baudin
LRc04	576		
LRc05	2148		
LRc06	2205		
LRc07	3722		
LRc08	1525		
LRc09	1941		
IRa01	1458		
LRa01	1698	400	Mosser et al. 2010 A&A
LRa02	1481	200	Mosser&Baudin
LRa03	755	100	Mosser&Baudin
LRa04	660		
LRa05	664		
LRa06	1099		

Next

- Analysis and re-analysis of all exofields using the same criteria of target selection and tools
- Better selection:

J-Ks > 0.5/0.6 & R< 15 or R < 16

Test on LRc07 =>

Eliminate binaries from sample

Provide LC clean enough to run available pipelines on large number of targets => col. detection team

CoRoT extension program

Simulations utilisant le modèle de Galaxie Triegal donnant des estimations du nombre total de géantes rouges, de la population du disque mince, du disque épais du halo et du bulge,.

block	NT	Thin D	Thick D	Н	В
1859	1431	1400 (98.9%)	14 (1%)	2 (0.14%)	0
1861	1258	1242 (98.7%)	15 (1.2%)	1 (0.08%)	0
1863	1258	997 (97.75%)	22 (2.15%)	1 (0.1%)	0
1864	2807	2788 (99.3%)	17 (0.6%)	2 (0.07%)	0
1865	272	250 (92%)	20 (7.35%)	2 (0.74%)	0
1866	1404	1179 (83.97%)	137 (9.76%)	39 (2.8%)	49 (3.5%)
1867	1226	945 (77%)	131 (10.7%)	48 (3.9%)	102 (8.32%)
1868	789	621 (78.7%)	99 (12.55%)	34 (4.3%)	35 (4.4%)
1869	590	585 (99.15%)	3 (0.5%)	1 (0.17%)	1 (0.17%)
1871	1184	1164 (98.3%)	14 (1.18%)	3 (0.25%)	3 (0.25%)
1872	1231	1197 (97.24%)	24 (1.95%)	6 (0.5%)	4 (0.3%)
1873	3338	3315 (99.3%)	21 (0.63%)	2 (0.06%)	0
1874	974	824 (84.6%)	74 (7.6%)	29 (3%)	47 (4.5%)

+ BULGE

The Bulge

Percentage of Bulge giants respect the total number of stars .

Barbieri, Miglio, Girardi, in prep.

(I,b)=(~22,-8) in a 4deg^2 field there are ~24k stars, of which ~19k giants. R <15 (K. Freeman)

Spectroscopic survey by K. Freeman

Target	Run	time(d)	Δν	$ u_{\rm max}$	ν́s	spec	
HD49566	SRa01	27	Х	Х		Х	Hekker+2011 (AstroPH)
HD50890	IRa01	55	Х	Х	Х	Х	Baudin+2012A&A
HD169370	LRc03	90	Х	Х		Х	Hekker+2011 (AstroPH)
HD169751	LRc03	90	Х	Х		Х	Hekker+2011 (AstroPH)
HD170008	LRc03	90	Х	Х	Х	Х	Baudin (prep)
HD171427	LRc02	150	Х	Х	Х	Х	No oscillations
HD175679	SRc01	27	Х	Х		Х	
HD181907	LRc01	150	Х	Х	Х	Х	Carrier+2010A&A, ApSS, Miglio+2010 A&A
HD45398	SRa04	55	Х	Х		Х	
HD49429	SRa01	27	Х	Х		Х	
HD170031	LRc07/08	169	Х	Х	Х	C X	NGC6633 !!!!
HD170053	LRc07/08	169	Х	Х	Х	Х	NGC6633
HD170174	LRc07/08	169	Х	Х	Х	Х	NGC6633
HD170231	LRc07/08	169	Х	Х	Х	Х	NGC6633
HD169689	LRc04/10	169	Х	Х		C X	
HD49161	SRa01	27					
HD48976	SRa01	27					
HD174323	SRc02	24					
HD178484	LRc09	86	Х	Х		X O	

CoRoT potential

Nearby giants : ground follow up (RV)

Results from RG in seismo field

■ HD 50890 : Massive red giant (3-5M_☉) NO evident dipole mode (Baudin et al 2012 A&A)

□ HD 181907: low mass Red G (1.2 M_{\odot}) R=12.2 R_{\odot} in agreement with its parallax . (Carrier et al 2010, A&A)

First detection of Hell signal in a red giant (Miglio et al. 2010, A&A)

Periodic components in v

Signature of an acoustic glitch in the star!!

e.g. Gough 1990

Results from RG in seismo field

■ HD 50890 : Massive red giant (3-5M_☉) NO evident dipole mode (Baudin et al 2012 A&A)

□ HD 181907: low mass Red G (1.2 M_{\odot}) R=12.2 R_{\odot} in agreement with its parallax . (Carrier et al 2010, A&A)

Results from RG in seismo field

Spectroscopic follow up of RGs with HARPS & FEROS

Check of seismic gravities

Teff , log g, [Fe/H] & individual elements

Seismic constraints => M and evolutionary stage

Better interpretation of abundance results. In particular that of elements indicating mixing

Morel et al. 2013, in prep

Red Giants in a cluster

Smiljanic et al. 2009

- Atmospheric parameters derived (Morel et al. 2013 in prep)
- Global seismic parameters:
 ν_{max} & Δν from 3 diff. groups

First estimate of R & M

Individual freqs:

HD 170174 HD 170231 HD 170053 HD 170031

15-30 modes

RV, M and Ba abundance HD 170031 No member

Radial Velocity campaign

Simultaneous radial velocity campaign

Conclusions

ESO-ESA Working groups Report #4 on Galactic populations, Chemistry and Dynamics (Turon et al. 2008) did the following recommendation to ESA :

"Asteroseismology: this is a major tool to complement Gaia with respect to age determinations. ESA should encourage the community to prepare for a next-generation mission, which would sample the different populations of the Galaxy much more widely than CNES-ESA's Corot (50 targets, mainly main-sequence stars with a metallicity close to solar) and NASA's Kepler (mainly main-sequence stars, some giants and pulsating stars)".

BUT

CoRot and Kepler missions have already observed several thousands of red giants in different directions (16) of the Milky Way, and therefore they are able (once chemical composition added) to provide a precious complement to GAIA measurements for the study of the structure, formation and evolution of the Galaxy.