COROT 101186644: A transiting lowmass dense **M-dwarf** on an

eccentric 20.7-day period orbit around a

late F-star

L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley

European Research Council Established by the European Commission

arXiv:1302.5830: L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley²

CoRoT 101186644: The candidate

arXiv:1302.5830: L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley³

CoRoT 101186644: The star

Parameter	Value	Ref.
RA (J2000)	19 <i>h</i> 26 <i>m</i> 59s.08	ExoDat
Dec (J2000)	+00°29'06".4	ExoDat
V (mag)	<u>16.05 + 0.07</u>	ExoDat

Contamination level - about 10 %

Photometric follow-up: on target

<u>Top:</u> Image from the Wise Observatory <u>Bottom:</u> Image from CoRoT with the photometric mask

arXiv:1302.5830: L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley

CoRoT 101186644: HARPS spectra and RVs

arXiv:1302.5830: L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley⁵

CoRoT 101186644: Primary modeling

Filter	Magnitude	Source
В	17.09 ± 0.15	$ExoDat^{a}$
V	16.05 ± 0.07	ExoDat
r'	15.67 ± 0.14	ExoDat
i'	14.93 ± 0.03	ExoDat
J	14.03 ± 0.03	$2MASS^b$
H	13.63 ± 0.02	2MASS
Ks	13.56 ± 0.03	2MASS

Primary parameters	Value	Method
Mass (M_Sun)	1.2 <u>+</u> 0.2	Atmospheric parameters + YY isochrones
Age (Gyr, 2σ)	< 7	Atmospheric parameters + YY isochrones
Distance (pc)	1100 +300 / -150	Broad-band photometry + YY isochrones
Extinction (A_V, mag)	1.1 +0.2 / -0.4	Broad-band photometry + YY isochrones

arXiv:1302.5830: L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley

CoRoT 101186644: MCMC analysis 1.01 Radial Velocity [km s⁻¹] 25 Normalized flux 0.98 15 Residuals 0.9 0.96 -0.010.01 0.64 0.65 0.66 0.67 0.68 0.2 0.4 0.6 0.8 Phase Phase

MCMC features:

- **1.** Simultaneous lightcurve and RVs modeling $(\chi^2 = \chi^2_{lightcurve} + \chi^2_{RV})$
- **2.** 12 free parameters: $P, T_o, e \cdot cos\omega$, $e \cdot sin\omega$, J_s, r_t, k , $L_{3'}, x$, u_p, K , γ
- 3. Metropolis-Hastings sampling
- 4. 1,000,000 accepted steps
- 5. Lightcurve model: EBOP (Popper & Etzel 1981)

<u>arXiv:1302.5830:</u> L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley⁷

CoRoT 101186644: MCMC analysis

arXiv:1302.5830: L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley⁸

CoRoT 101186644: MCMC analysis

Symbol	Parameter name	Value	Units
	Orbital parameters		
Р	Orbital period	20.6841 ± 0.0006	day
$e\cos\omega$	Eccentricity \times cosine longitude of periastron	$0.251_{-0.007}$ +0.002	-
$e \sin \omega$	Eccentricity \times sine longitude of periastron	-0.314 ± 0.006	-
Κ	RV semiamplitude	6.816 ± 0.039	km s ^{−1}
γ	Center-of-mass RV	19.608 ± 0.038	km s ^{−1}
Т	Time of periastron*	$2454234.31_{-0.09}$ +0.04	BJD
f	Mass function*	0.000522 ± 0.000010	M_{\odot}
-	Photometric parameters		
T_0	Time of center of primary transit	2454240.3144 ± 0.0023	BJD
J_s	Surface-brightness ratio	$0.02_{-0.02}$ +0.04	_
r_t	Fractional sum of radii ^{**} (= $(R_1+R_2)/a$)	$0.0336_{-0.0004}$ +0.0019	_
k	Ratio of radii ^{**} $(=R_2/R_1)$	$0.095_{-0.001}$ +0.026	_
x	Impact parameter ^{**} (= $\cos i \cdot (1 - e^2) \cdot r_t^{-1} \cdot (1 + e \sin \omega)^{-1}$)	0.0 ± 0.2	_
L_3	Third-light (blending) fraction***	$0.10_{-0.03}$ +0.35	_
u_p	Limb-darkening coefficient of primary***	$0.57_{-0.01}$ +0.06	_
i	inclination*	90.0 ± 0.4	degree
	Parameters estimated assuming $M_1 = 1.2 \pm 0.2 M_{\odot}$		
q	Mass ratio [*] (M_2/M_1)	0.080 ± 0.005	-
a	Semi-major axis [*] $(M_1 f^{-1} \sin^3 i)q^3 - q^2 - 2q - 1 = 0.$	0.16 ± 0.01	AU
M_2	Mass of secondary*	0.096 ± 0.011	Mo
R_1	Radius of primary [*] $(D^2(M + M)) = r^3$	1.07 ± 0.07	R_{\odot}
R_2	Radius of secondary* $R_1^3 = \frac{GP^2(M_1 + M_2)}{4 \cdot 2} \frac{r_t}{(1 + M_2)^3}$	$0.104_{-0.006}$ +0.026	R _o
$\log g_1$	Surface gravity of primary* $4\pi^2 (1+k)^3$	4.47_0.06	cgs

* derived analytically from the fitted parameters

** see Tamuz et al. (2006) and Mazeh et al. (2006) for the reasoning behind this definition

*** lower limit was determined by the chosen prior

<u>arXiv:1302.5830:</u> L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley

M-R relation of very low mass stars (VLMS)

arXiv:1302.5830: L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley¹⁰

Conclusions

- 1. C4780 B might be the smallest main sequence star ever detected.
- Further investigation of the blending fraction

 (L₃) might reduce the uncertainties on its radius.
- 3. The models of VLMS display a large theoretical spread, caused by differences in age, metallicity, fast rotation, magnetic activity, strong irradiation, and clouds (e.g., Lopez-Morales 2007; Chabrier et al. 2007; Morales et al. 2010; Bouchy et al. 2011; Burrows et al. 2011; Knigge et al. 2011; Feiden & Chaboyer 2012).
- 4. No apparent inconsistency between the observed systems and the available theory can be deduced.
- 5. Complete and homogeneous analysis of low mass M dwarfs that were detected by CoRoT and *Kepler* might help understanding the astrophysics close to the low end of the main sequence.

<u>arXiv:1302.5830:</u> L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley¹¹

Conclusions

- 1. C4780 B might be the smallest main sequence star ever detected.
- 2. Further investigation of the blending fraction (L_3) might reduce the uncertainties on its radius.
- 3. The models of VLMS display a large theoretical spread, caused by differences in age, metallicity, fast rotation, magnetic activity, strong irradiation, and clouds (e.g., Lopez-Morales 2007; Chabrier et al. 2007; Morales et al. 2010; Bouchy et al. 2011; Burrows et al. 2011; Knigge et al. 2011; Feiden & Chaboyer 2012).
- 4. No apparent inconsistency between the observed systems and the available theory can be deduced.
- 5. Complete and homogeneous analysis of low mass M dwarfs that were detected by CoRoT and *Kepler* might enhance our understanding of the astrophysics close to the low end of the main sequence.

<u>arXiv:1302.5830:</u> L. Tal-Or, T. Mazeh, R. Alonso, F. Bouchy, J. Cabrera, H. J. Deeg, M. Deleuil, S. Faigler, M. Fridlund, G. Hebrard, C. Moutou, A. Santerne, and B. Tingley¹²