

Service d'Astrophysique Laboratoire AIM

MAIN SEQUENCE AND SUBGIANTS: INTRODUCTION

Rafael A. García

Service d'Astrophysique, CEA-Saclay, France

With the help of E. Michel

- What is a solar-like oscillating star?
 - Those in which oscillations are stochastically excited by turbulent convection
- Oscillations are seated over a convective background

[Goldreich & Keeley 1977]

[Harvey, 1985; Lefebvre et al. 2008; Mathur et al. 2011]

 \triangleright v_{max} scales with the acoustic cut-off frequency

[Brown et al. 1991; Belkacem et al. 2012]

 $\nu_{\rm max} \propto g T_{\rm eff}^{-1/2} \propto M R^{-2} T_{\rm eff}^{-1/2}$

I - EXTRACTING GLOBAL PROPERTIES

$$\langle \Delta \nu \rangle \propto \langle \rho \rangle^{1/2} \propto M^{1/2} R^{-3/2}$$

$$v_{\rm max} \propto g T_{\rm eff}^{-1/2} \propto M R^{-2} T_{\rm eff}^{-1/2}$$

- Use of scaling relations
 - From global asteroseismic parameters and a good estimation of T_{eff}
 - Tested both theoretically and observationally

$$\frac{R}{R_{\odot}} = \left(\frac{135}{\langle \Delta \nu \rangle}\right)^2 \left(\frac{\nu_{\text{max}}}{3050}\right) \left(\frac{T_{\text{eff}}}{5777}\right)^{1/2}$$

$$\frac{M}{M_{\odot}} = \left(\frac{135}{\langle \Delta \nu \rangle}\right)^4 \left(\frac{\nu_{\text{max}}}{3050}\right)^3 \left(\frac{T_{\text{eff}}}{5777}\right)^{3/2}$$

I - EXTRACTING GLOBAL PROPERTIES

$$\langle \Delta \nu \rangle \propto \langle \rho \rangle^{1/2} \propto M^{1/2} R^{-3/2}$$

$$v_{
m max} \propto g T_{
m eff}^{-1/2} \propto M R^{-2} T_{
m eff}^{-1/2}$$

Use of scaling relations

■ From global actorogolomic parameters and a good actimation of

Tested bot

I-SCALING-RELATION COMPARISON

- Validation of the scaling relations using:
 - Interferometric measurements
 - G. based, CoRoT & Kepler targets

- Seismic and IRFM distances compared to Hipparcos
 - Interferometric measurements
 - G. based, CoRoT & Kepler targets
- Also compared to theoretical predictions (Kepler stars)

Before 2007

[Bouchy & Carrier 2002]

Before 2007

CoRoT

- Before 2007
- CoRoT
- Kepler

II- What have we learnt? Some selected results

II-WHICH DATA DO WE HAVE?

- Corot IS a success for the study of oscillating stars
 - Main sequence, Subgiants and giants

II-WHICH DATA DO WE HAVE?

Corot IS a success in the study of S-L oscillating stars

Star type	All Runs	LR	IR	SR
FG Sol-like	19	8	8	3

[http://www.lesia.obspm.fr/projets/corotswg/targetssismoEM.htm]

II- THE PROBLEM OF THE F-TYPE STARS

Irfu cal

- First stars to be observed: Main sequence F-Type stars
 - Higher expected Amplitudes than G-type stars
 - Problem: Linewidths > δv
 - How to identify the modes ?
- Set up the "modern" procedure to:
 - Obtain global seismic parameters: A u and u max
 - identify and extract individual mode frequencies

[Benomar et al. 2009]

SURFACE AND INTERNAL ROTATION

- Surface rotation:
 - For active stars only (see presentations by F. Baudin, J.D. do Nascimento Jr.)

[Mosser et al. 2009, do Nascimento et al. 2012]

[Appourchaux et al. 2008; Barban et al. 2009. Garcia et al. 2009, Mathur et al. 2010,2013...]

- Internal rotation:
 - Measuring rotational splittings
 - Complicate measurement:
 - Inclination angle of the star

SURFACE AND INTERNAL ROTATION

- Surface rotation:
 - For active stars only (see presentations by F. Baudin, J.D. do Nascimento Jr.)

[Mosser et al. 2009, do Nascimento et al. 2012]

[Appourchaux et al. 2008; Barban et al. 2009. Garcia et al. 2009, Mathur et al. 2010,2013...]

Internal rotation:

Measuring rotational splittings

HD52265

SURFACE AND INTERNAL ROTATION

- Surface rotation:
 - For active stars only (see presentations by F. Baudin, J.D. do Nascimento Jr.)

[Mosser et al. 2009, do Nascimento et al. 2012]

[Appourchaux et al. 2008; Barban et al. 2009. Garcia et al. 2009, Mathur et al. 2010,2013...]

- Internal rotation:
 - Measuring rotational splittings
 - Complicate measurement:

HD169392

[Mathur et al. 2013]

STARS IN MULTIPLE SYSTEMS

- Two S-L main targets belongs to multiple systems:
 - HD 169392
 - · weakly bound binary system

[Mathur et al. 2013]

- HD 43587
 - quadruple system composed of two distant main sequence visual binaries

[Boumier et al. in preparation]

STARS IN MULTIPLE SYSTEMS

- Two S-L main targets belongs to multiple systems:
 - HD 169392
 - · weakly bound binary system

[Mathur et al. 2013]

- HD 43587
 - quadruple system composed of two distant main sequence visual binaries

[Boumier et al. in preparation]

- Two host of non-transiting planets
 - HD 46375
 - Determination of the global stellar greaters.
 - Re-estimation of the planet (a factor 2 better accuracy)
 - HD 52265

[Gaulme et al. 2010]

- Determination of the global stellar parameters and the inclination of the star
 - The companion is more likely a planet and not a brown dwarf.
- Also new Kepler results

[Gizon et al. 2013]

STARS IN MULTIPLE SYSTEMS

➤ Highlights on some results based on *Kepler* targets

[Huber et al. 2013]

- 66 seismic targets (107 planet candidates)
 - Complete different planetary solution for 4% of them
- Surface gravities in Batalha et al. (2013) based on high-resolution spectroscopy
 - Subgiants and giants are systematically overestimated,
 - underestimated stellar radii (and hence planet-candidate radii) by up to a factor of 1.5
 - Unevolved stars are in good agreement
 - But greatly improved when seismology is taken into account
- Identification of misclassified stars (sub giants and giants instead of M dwrfs)
- Stellar densities compared with those derived from transit models (circular orbits)
 - significant disagreement for > 50%
 - systematics in the modeled impact parameters, or due to planet candidates which may be in eccentric orbits.
- Re-derived radii and semi-major axes for the 107 planet candidates

STARS AS A PHYSICS LAB.

A solar analogue R=0.91±0.001 R_{\odot} ; M=0.85± 0.01 M_{\odot}

[Barban et al. in preparation]

- Sounding the cores:
 - Through mixed modes
 - Very precise dating tool
 - [Deheuvels & Michel 2010, 2011] HD49385
 - Existence of core overshoot
 - HD49933 [Benomar et al. 2010; Goupil et al. 2011]
 - Core overshoot needed
- Tracking the Hell partial ionisation zone and BCZ:

[Mazumdar & Michel 2010]

HD181907 (RG)

[Miglio et al. 2010]

- Constraining stellar Tachoclines:
 - HD52265:
 - Larger than the Sun

OTHER ON-GOING WORKS

- On Amplitudes and linewidths + global seismic parameters
 - Mosser/Belkacem talk
- Comparing Models and Observations:
 - The Surface effects
 - I. Roxburgh talk + Poster
- Surface rotation extracted from the light curves:
 - Already seen yesterday ©
 - J.D. do Nascimento Jr.
- Stellar activity
 - Already seen yesterday ©
 - · F. Baudin, J. Weingrill
 - Talk by Mathur/Garcia
- + everything else that I could not mention

WHAT ABOUT THE FUTURE?

- CoRoT mid-term S-L future is bright
 - With still some new data not yet analysed and archive datasets
- Legacy catalogue of stellar parameters
 - Masses, Ratios, logg...
 - Stars in the sismo and exo field showing S-L pulsations
- Statistical analysis of stars as a function of the evolutionary state
 - (Surface) Rotation
 - Magnetic induced variability
 - Background (granulation) properties
- Constraints on stellar physics
 - New physics to be tested:
 - Core overshoot
 - Tachoclines + glitches...
 - Properties of stars in the clump vs. RGB
 - E.g. Mass loss during RGB

[Fp7-SPACEINN Project]

And all the crew that makes this possible

Welcome to CoRoT Symposium 3 + KASC-7
To be held in Summer 2014
TOULOUSE