PERIODIC PATTERNS: A "NEW" OBSERVABLE FOR δ SCUTI STARS?: HD 174966

A. García Hernández, A. Moya, J. C. Suárez, E. Poretti et al. – Centro de Astrofísica da Univ. do Porto

- Frequency content of the CoRoT light curve
- Spectroscopic observations
- \square Periodic patterns: $\Delta \nu$ or Ω ?
- $\Box \Delta \nu$ as an observable
- Conclusions

Frequency content

- ♦ SRc01 = 27 days
- $1/\Delta T = 0.037 d^{-1}$
- 185 frequencies
- 37 possible
 combinations:
- F_i = F_{a+b} (F_{a+b} ≡ Af_a+BF_b) → Only 12 possible combinations within 1σ

300 400 500 100 200 600 700 800 10^{4} 10^{3} Amplitude (µmag) 10^{2} 10^{1} 10° 20 30 40 50 60 70 10 Frequency (d^{-1})

Frequency (µHz)

900

80

Spectroscopic observations

- Not simultaneous with CoRoT
- □ 53 days with 341 spectrograms:

Spect.	#	R	N° nights	Observatory	Exp. time
HARPS	104	80000	12	ESO-La Silla	1200 s
FOCES	155	65000	21	Calar Alto	900 s
SOPHIE	81	75000	9	Haute Provence	700s

Physical parameters: LSD method, SME code, FAMIAS code, etc...

Spectroscopic observations

Periodic patterns: a "new" observable for δ Scuti stars?: HD174966 March 21, 2013 A. García Hernández

11th CoRoT Week

Periodic patterns

6

Theory:
$$F(v) = \Delta_T(v) \cdot \Box(v).$$

$$\mathcal{F}(t) = \int_{\infty}^{\infty} \Delta_T(v) \cdot \Box(v) \cdot e^{-2\pi i v t} dv = \Delta_{1/T} * \operatorname{sinc}(t).$$

- Method:
 - Visibility of the modes decrease with L (spherical degree)
 - Subsets of the highest frequencies
 - Identify periodicity and multiples

Periodic patterns

7

- Inexact pattern:

 missing frequencies
 peaks not in the pattern

 FT with:

 spurious peaks
 less powerful submultiples
 - broadened peaks
- Inverse scale
- Periodicity = 64 μHz
- Submultiples

Periodic patterns: $\Delta \nu$ or Ω ?

$\Delta \nu$:

- Even at high rotations (Lignières et al. 2006)
- Pattern (Dirac comb)
- More sensible for FT
- **Ω**:
 - Multiplets non-regulars (Soufi et al. 1995, Suárez et al. 2006)
 - Frequency spacing (Lignières et al. 2010)
 - Máx. splitting= 29 μHz

Echelle diagram for the 30 highest amplitude frequencies

- Reese et al. 2013, private communication
- \square 2 M $_{\odot}$ SCF models:
 - OPAL opacities
 - EOS: Eggleton et al. (1973)
 - Nuclear rates: Caughlin & Fowler (1988)
 - α_{MLT} = 1.9
 - Chemically homogeneous
 - Uniform rotation
- □ n = 5-10
- $\square \Delta v$ simple function of ρ

11

\square Model discrimination: $\Delta v = 65 \pm 2.5 \ \mu Hz$

	Method	Spectroscopic box	Using Δv
 Model database: 	$T_{\rm eff}$ (K)	[7505, 7605]	[7505, 7605]
 Non-rotating 	$\log g$	[4.16, 4.26]	[4.19, 4.25]
 CESAM eq. models 	[Fe/H]	[-0.18, +0.02]	[-0.18, +0.02]
 Non-adiabatic freqs. 	$lpha_{ML}$	[0.5, 1.0]	[0.5, 1.0]
(GRACO)	d_{ov}	[0.1, 0.3]	[0.1, 0.3]
• M=[1.25, 2.20] Msol	$M (M_{\odot})$	[1.49, 1.58]	[1.49, 1.55]
• [Fe/H]=[-0.52, 0.08] dex	$R(R_{\odot})$	[1.50, 1.73]	[1.53, 1.65]
• $\alpha_{m} = [0, 5, 1, 5] dex$	$L(L_{\odot})$	[6.47, 8.92]	[6.73, 8.01]
$\alpha_{M[1]}$ [0:0, 1:0] dex	$\rho (\mathrm{g}\mathrm{cm}^{-3})$	[0.43, 0.62]	[0.49, 0.59]
$a_{ov} = [0.1, 0.5] \text{ dex}$	Age (My.)	[826, 1306]	[906, 1206]
• $L = [0, 3]$	X _c	[0.4105, 0.5676]	[0.4534, 0.5478]

12

Mode identification?

- Rotating models (2nd order perturbative approx., FILOU):
 - Different range
 - Not full rotation
 - "Casual" patterns
 - Only island modes
- Amplitude ratios (Reese et al. 2013A&A...550A.. 77R)
- Paparó (following talk)

Conclusions

- $\Box \Delta v$ with high precision for δ Sct stars (high rotation)
- \square Non-rotating models \clubsuit information about the star
- $\square \rho$ determination with ~9% uncertainty
- \square No assumption about Ω of the star (up to \sim 0.4 $\Omega_{\rm C}$)
- Definitely, a complementary observable
- Up to now, non-reliable mode identification