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the precision of planet radii
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motivation: parameters for transiting planets
to which precision?
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mass to 10% and radius to 5% to distinguish between solid rocky and water rich planets

better than 2% in radius for further bulk characterization
(Valencia et al. 2009, ApJ, 665; Grasset et al. 2009, ApJ, 693; Wagner et al. 2011, Icarus, 214,

366)
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Effect of limb darkening
on transit depth and shape

~50% approximation: P B !
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time to time.

FiG. 2 —Transit light eurves forp = 0.1 and ¢, = ¢, = &, = ¢, = 0 (solid line), and all coefficients equal zero but ¢, = 1 (dofted line). ¢, = 1 (dashed ling),
¢; = 1 (dash-dotted ling), or ¢, = 1 (dash—triple-dotfed line). The thinner lines (nearly indistingnishable) show the approximation of § 5.
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Mandel & Agol (2002) ApJ, 580




Limb darkening: observations vs theory

sometimes, theory and observations agree well:
e.g. CoRoT-8b (Bordé et al 2010), CoRoT-11b (Gandolfi et al. 2010)...

sometimes there are large differences:

e.g. CoRoT-13b (Cabrera et al. 2010; Southworth 2011), CoRoT-12b (Gillon et al
2010), HD 209458 (Claret 2009), Kepler-5b (Kipping & Bakos 2011), WASP-13
(Barros et al. 2012)...

Motivating factors:

(1) To understand these agreements/disagreements.

(2) To understand the results of the homogeneous re-analysis of the CoRoT
transits.

(3) To understand the accuracy and systematics of our planetary raddii (and mean
densities).
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Calculation shows (Csizmadia et al. 2013, A&A 549, A9): to measure the
planet-to-stellar radius ratio with 5% uncertainty, you need to know the limb
darkening with at least 0.5% precision.
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Theoretical uncertainties of 1D limb darkening

0.8 |
06 |
04 |

0.2

log(g)=4.5; [M/H]=0.0; v;=2 km s~

C.&B.2011: ATLAS; FCM - JOF d -
C. & B.2011: ATLAS: LSM i i —
C. & B. 2011: PHOENIX: FCM i Ay ——__ p=0s
C. & B. 2011: PHOENIX: LSM i S
1 — 15[
5o i
- x -
-~ 10F
v I
=] i
5F
| D_||||||llllllllllll|||IIIIIIIIIIIIIIIIIIIIIIII
2000 4000 5000 5000 7000 8000 000 4000 5000 6000 7000 8000
Ter [K]

Teff

Csizmadia et al. (2013) A&A 549
{3D modellng efforts Hayek et aI 2012 A&A 539}




modelling of planetary parameters:
impact of limb darkening

Fig. 4. Illustration of the effect of Type I spots. Left: the planet crosses
an unmaculated star that is characterized with some limb darkening co-
efficient uy. Right: the planet crosses the appareant stellar disc of a spot-
ted star, where the spots and the planet have different impact parame-
ters. as well as the stellar photosphere and the spots have different limb
darkening coefficients (ug. ). Grey area is the planet. black ellipses

represent the spots. Csizmadia et al. (2013) ARA
apparent stellar disk cannot be characterized with single effective temperature
(and not only because of gravity darkening, von Zeipel 1924; Barnes 2009...)
surface brightness cannot be characterized with single limb darkening coefficient
(associated to a single effective temperature
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Stellar spots and faculae

Type | Type Il Type Il
Short life-time, Short life-time, Long life-time, pole-on,
not occulted occulted slow rotation, no modulation
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modelling of planetary parameters:
impact of limb darkening

spots act as sources of contamination, but they also change the effective
measured limb darkening coefficients
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Csizmadia et al. (2013) A&A

Fig. 5. The x-axis is the total spotted area in percentage of the whole
stellar surface area. The y-axis 1s the effective - i.e observed - limb dark-
ening coeflicients relative to the table value at the given stellar efffective
temperature. For this figure we used Ty = 5775K and Tpors = 3775K,
and the positions of the spots were chosen randomly on the visible
DLR hemispher - _ . - _ o

emisphere. The size of the spots were always the same. so higher

anot covaraoe coitesnonds to larear mumhber of cnotes The 1liimb darlcen-




Factors which affect the planetary radii determination

Clausen et al. 2009

Random and systematic errors
in stellar parameters

Theoretical uncertainties of LD
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Uncertainty in fixing LD-coefficients
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planet’ = “star




Factors which affect the planetary radii determination

Clausen et al. 2009

Random and systematic errors
in stellar parameters

Adjusting LD-coefficients

A 4

Uncertainty in R /R

planet’ = “star

Uncertainty in R, and density

1-20%, dominated by Rstar
Ty s



Conclusion

(1) We have a much deeper understanding of spot-limb darkening relation, and
what the impact of LD-uncertainty on the planetary parameters is.

(2) We advise to fit the limb-darkening coefficients, even if the SNR is low.
(Systematics due to spots!)

(3) Now we can interpret the results of the homogeneous re-analysis of the
CoRoT transit light curves (Csizmadia et al. 2013, in prep.).

(4) 3D models of stellar atmospheres are urgently needed for space observatories

(MOST, CoRoT, Kepler, PLATO, etc.). Effect of spots should be included
somehow.
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CAVEAT:

Limb darkening is a
polynomial expresison of
the coeffciients:

L A R R e e

Other numbers can be as
good approximations. Not
The value of the coefficients
are important, but the shape
of the intensity distribution.

However, inverse effect
remains.

i DLR

Fig. 7. The radial intensity profile D(r/R) as a function of the
sky-projected distance » from the stellar centre (R 1s the stellar
radius). As in all calculation in this paper, u = /1 — (r/R)*.
The solid line shows the effect of limb darkening D(r) =
Lp(ry. 1z, 1)/ (1 = 1y/3 — 1/ 6) that - multiplied by & - is di-
rectly proportional to the light loss during a transit. The dashed
lines show the tolerable ranges: between these lines the radial
intensity distribution profile will produce a radius ratio £ that 1s
in the tolerance range of +5%. The dotted line 1s an example
of an acceptable radial intensity distribution profile with #; =
0.82,1, = —0.16, while the dot-dashed line 1s with #; = 0.02,

i, = 0.6.
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modelling of planetary parameters:
impact of limb darkening
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Random and systematic errors in stellar

parameters
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Fiz. 10.— Mass and radius differences resulting from the use

of constrained and unconstrained spectroscopic properties from
SME along with stellar evolution models. Differences in the sense
(constrained minus unconstrained) are shown in absolute units on
the left, and as a percentage of M, or K, on the right.

Torres et al. (2012) ApJ, 757
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Fia. 11. Systematic errors in the stellar mass and radius

(expressed as a percentage) when using unconstrained values of
Tesr and [Fe/H] from SME together with the external photometric
constraint on log g from the mean stellar density. The differences
shown are between the mixed usage just mentioned and the con-
strained results from a second iteration of SME described in the
text. in the sense (mixed minus constrained).

Even in the best case, uncertainties in planetary parameters can be up to 10%
{only way through is asteroseismology, from space (CoRoT, Kepler) but limited

amount of targets (limited by brlghtness) — . PLATO (Rauer Frlday)}
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