
The Spline-AoV Periodogram 

Method 
 

Our method is based on the Schwarzenberg-Czerny Analysis of Variance (AoV) 
periodogram(a), which operates as follows: The periodogram iterates through a large series 
of candidate periods, folding the given light curve (LC) by each period, and examining the 
phased curve. The phased curve is divided into a group of phase bins and is effectively 
fitted by a step function, where the average of each bin determined a step (Figure 1). The 
periodogram score of each candidate period is then calculated as being proportional to a 
weighted variance of these step values, divided by the variance of the residuals. The 
spline-AoV periodogram generalizes this procedure by fitting the phased LC with a spline. 
Each bin is fitted with an Nth degree polynomial, where the polynomials are constrained so 
that their joints are cyclic(b) and can be differentiated M times before becoming 
discontinuous. This piecewise function is called an M,N-spline.  

One can construct M,N-splines with any pair of integer values such that N ≥ M ≥ 0. One 
must fit (N-M+1) free parameters per bin, so that at least this number of data point are 
needed in each bin to avoid degeneracies(c).  The simplest spline is a 0,0-spline, which 
exactly describes the step function of the original AoV periodogram. However, for splines 
with M ≥ 1, the entire spline must be fit at once, which can be done by simultaneously 
solving (N∙B) linear equations, where B is the number of bins. 

Abstract 
 

    Periodograms are a family of analytic methods for finding periodic patterns in light 

curves and other time series. The choice for one periodogram over another generally 

hinges on its sensitivity (its ability to detect low SNR patterns) and the accuracy of its 

measured periods. As a general rule, the performance of periodograms can be improved 

by making assumptions about the periodic patterns one is searching for. However, this 

comes at a cost of performing poorly in cases where the assumptions do not hold. In this 

poster I introduce a new class of non-specialized spline-based periodograms that can 

operate on unevenly sampled observations. These periodograms are a generalization of 

the Schwarzenberg-Czerny (1989) Analysis of Variance (AoV) periodogram, which in this 

new framework can be called: 0,0-spline-AoV. When comparing this original AoV 

periodogram with a 1,1-spline-AoV periodogram, one finds that the new algorithm is 

slightly more sensitive and about twice as accurate in determining the period of eclipsing 

binaries in CoRoT-like light curves. 

 

Results 
 

To compare the effectiveness of the original AoV (or 0,0-spline-AoV) periodogram with 

the new spline-AoV (1,1-spline-AoV) periodogram, I ran both algorithms on sets of 1000 

simulated eclipsing binary (EB) LCs. The LC sampling was constructed to be similar to 

CoRoT long-run LCs, with a 512 second sampling cadence over 100 days. In each set the 

eclipse duration and depth were held fixed, while the Gaussian noise realization and the 

epoch of the eclipse were randomized. After computing the both periodograms for each 

LC, the most-likely period of each method were compared with the simulation’s true period. 

If a period error was large (frequency error >0.005 day-1 or about ΔP/P > 0.006), the 

solution was considered unsuccessful and was rejected. The probability of a random 

period passing this criterion by chance (i.e. a false positive) is about 1%. The “success 

rate” of each method is the fraction of successful solution it produced, and the “accuracy” 

of each method is the median fractional absolute period error (|ΔP|/P) among the 

successful solutions.  

Both methods were found to have very similar success rates (Figure 2), with the spline-

AoV being very slightly better, though both methods perform excellently when the eclipse 

depth is >0.5σ. However, the accuracy of the spline-AoV solutions were about twice as 

good as the original AoV solutions, while the errors of both methods were typically more 

than an order of magnitude better than the success criterion described above (Figure 3). 

To understand why the spline-AoV produces significantly smaller errors, I compared the 

periodogram peaks produced by both methods (Figure 4) and found that the spline-AoV 

peak is much smoother, so that determining its maximum is much more reliable. Both 

peaks may be offset from the true period by a small amount due to the LC noise, however 

the “roughness” of the AoV peak often doubles the size of this error.  

Finally, I compare the behavior of the two periodogram methods, when applied to LCs 

with varying depth (Figure 5), duration (Figures 6), and number of bins (Figure 7). In all 

cases the accuracy of the spline-AoV periodogram is significantly superior, with exceptions 

only for very low-SNR eclipses (depth < 0.25σ). Furthermore, both methods have a sharp 

falloff in their success rate when the eclipse duration is shorter than 0.03P. This is a 

consequence of the fact that such narrow eclipses will usually be completely containes 

within a single bin and so will not be fitted correctly by either method. Using a larger 

number of bins can alleviate this problem, however it will bring about a side-effect of 

increasing the number of fitted free parameters, which may have the periodogram over-fit 

the phased LC and so degrade its success rate and accuracy. This limitation is more 

pronounced with the spline-AoV than with the AoV periodogram, even when they have an 

equal number of free parameters. 

 

 

Fig 3. The fractional period error distributions (ΔP/P) 

of the AoV (top) and spline-AoV (bottom) methods 

when applied to 1000 simulated EB light curves. 

(25 bins ; eclipse depth = 1σ ; eclipse duration = 0.1P) 

Fig 6. The accuracy (lmedian |ΔP|/P ; left) and success rate (right) of the AoV (red) and spline-AoV (blue) 

periodograms for simulated EB light curves with varying eclipse durations. Note that harmonic multiples of the true 

period were also considered successful results, however such multiples only occur with very wide eclipses. 

 (25 bins ; eclipse depth =1σ) 

Fig 5. The accuracy (median |ΔP|/P ; smaller values are more accurate) of the AoV (red) and spline-AoV (blue) 

periodograms in determining the period of simulated EB light curves with varying eclipse depth.  The accuracy of 

the spline-AoV improves  faster than that of the AoV with higher SNR. (25 bins ; eclipse duration = 0.1P) 

Fig 2. The success rate of the AoV (red) and the 

spline-AoV (blue) periodograms in finding the correct 

period of simulated EB light curves with varying 

eclipse depth. (25 bins ; eclipse duration = 0.1P) 

Fig 1. A simulated phased EB light curve fitted with a 25-bin AoV (or 0,0-spline-AoV) step-function (left), compared 

with the identical data fitted with a 25-bin 1,1-spline-AoV (right). The Y-axis is scaled to the noise standard 

deviation. (eclipse duration = 0.1P  ; eclipse depth = 2σ) 

Fig 7. The accuracy (median |ΔP|/P) of the AoV (red) 

and spline-AoV (blue) periodograms with various 

numbers of bins.  

(eclipse duration = 0.1P ; eclipse depth =1σ) 
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Notes: 
 

(a) Schwarzenberg-Czerny, A. 1989, 

MNRAS, 241, 153 

 

(b) The end  of the last polynomial is joined 

to the beginning of the first.  

 

(c) There are some subtle exceptions to this 

statement. 
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Fig 4. A highly magnified view of the AoV (left ; red) and spline-AoV (right ; blue) periodograms around the true 

period. Each method returns the location of its respective periodogram maximum.  Noise in the LC can shift the 

maximum by a small amount, however  the noise in the AoV peak adds significantly to the effect of this shift, and 

so increases the AoV period error. (25 bins ; eclipse duration = 0.1P ; eclipse depth = 0.5σ) 


