

Outline of the session

Introduction

CMB spectrum and spectral distorsions (Talk J. Chluba)

Planck satellite and CMB maps

Foregrounds (Talk R. Genova-Santos)

Component separation (Talk B. Barreiro)

CMB angular power spectrum

Cosmology with CMB

Secondary anisotropies: CMB lensing & thermal Sunyaev-Zel'dovich (SZ)

Secondary anisotropies: kinetic SZ & ISW (Talk C. Hernandez-Monteagudo)

CMB polarisation status & future (Talk J.-A. Rubino-Martin)

CMB introduction & status

Introduction

The CMB maps

The CMB power spectrum

Cosmology with CMB: Main features in primary anistropies

Cosmology with CMB: cosmological parameters

Secondary anisotropies: CMB lensing

Secondary anisotropies: thermal Sunyaev-

Zel'dovich

Conclusions

A lot of material from Planck collab.

History of the Universe

Primordial Universe Photons produced Photons scattered until ~380000yrs after BB CMB= Image of Universe

Photons affected by the cosmic strutures

Cosmic microwave background

CMB = Photons from ~380000 yr at a surface of last scatter
Universe was ~ 3000°K at ~380000 yr
Full of visible light (~µm)

Universe expands

Temperature of Universe decreases to ~3 K Wavelength changes from visible to microwave (~cm) → Discovery by Penzias & Wilson

CMB Frequency spectrum

Early Universe in thermal equilibrium → Black Body spectrum at 2.73K from COBE/FIRAS in 1992 [Cf. Talk J. Chluba]

Spectral distorsions \rightarrow energetics of Universe (primordial & late time) PIXIE improvement by a factor 1000 \rightarrow μ <10⁻⁸ and y<2 \times 10⁻⁹

CMB introduction & status

Introduction

The CMB maps

The CMB power spectrum

Cosmology with CMB: Main features in primary anisotropies

Cosmology with CMB: cosmological parameters

Secondary anisotropies: CMB lensing

Secondary anisotropies: thermal Sunyaev-

Zel'dovich

Conclusions

History of CMB observations Three generations of satellites

The Planck satellite

- May '09: launch; Aug.: survey starts
- Nov. '10: nominal mission (2 surveys)
- Mid-Jan '12: extended cryogenic mission (5 surveys)
- Summer '13: mission achieved

Ultimate CMB measure of temperature & best measure of polarisation with available technology

- Two instuments:
 - LFI: 22 radiometers
 - HFI: 56 sensitive bolometers
 - Complex cryogenic cooling chain: 5 stages including 100mK He3&He4 dilution cooler
- All sky & anguar resolution (~5')
- High sensitivity: limited by astrophysical components

- 9 Frequency channel
- 7 Polarised channels (30 353GHz)

The Planck satellite

Fraction mK stability in space during > 2 years!

Cryostat He3/He4

The Planck satellite

Data reduction:

- 1 circle per minute
- 200 sky mesures per sec. & per detector during 29 months
- ~10¹⁰ samples (72 channels, 29 months)
- 50 Go raw data per detector
- 1 release: >2500 maps
- 1 map: 5 10⁷ pixels (9 freq.)
- 6 main cosmological parameters

~9 years of data analysis

→ control systematics!

We observe through our Galaxy

Dust & synchrotron induce the most prominent emissions (cf. Talk R. Genova-Santos)

→ Component separation needed to "clean" the CMB (cf. Talk B. Barreiro)

CMB temperature map

CMB polarisation map

Component (re)construction

Planck's physical component maps

(Cf. Talk B. Barreiro)

CMB map: an image of the Universe at 380,000 years old!

CMB temperature @smaller scales

CMB polarisation at smaller scales: e.g. ACTPol

CMB introduction & status

Introduction
The CMB maps

The CMB angular power spectrum

Cosmology with CMB: Main features in primary anisotropies

Secondary anisotropies: CMB lensing

Secondary anisotropies: thermal Sunyaev-

Zel'dovich

Conclusions

CMB angular power spectrum

- Quantify clumpiness on different scales → Decompose in spherical harmonic transforms (~Fourier transform on the sphere)
- BB isotropic radiation @T ~ 3K → State of early Universe
- Model predicts CMB is Gaussian and isotropic → all information contained in its angular power spectrum

CMB angular power spectrum

Temperature anisotropies on sky decomposed in harmonic transforms

$$T_{\rm CMB} = 2.726 K$$

$$\Delta T(\theta, \phi) = T(\theta, \phi) - T_{\text{CMB}}$$

Temperature anisotropy as a function of position on the sky

$$a_{\ell m} = \int \frac{\Delta T(\theta, \phi)}{T_{\text{CMB}}} Y_{\ell m}(\theta, \phi) d\Omega$$

For each multipole there are 2l+1 modes

$$C_{\ell} = \langle |a_{\ell m}|^2 \rangle$$

 $C_\ell = \langle |a_{\ell m}|^2 \rangle$ Variance of the spherical harmonic coefficients = angular power spectrum (Power in fluctuation of an angular size $\theta = \pi/I$

(cf talk A. Balaguera-Antolinez)

CMB temperature power spectrum across time

CMB polarisation across time

Scattering by free electrons at reionisation & recombination:

- Density fluctuations (velocity of photonbaryon fluid, quadrupole) → parity invariant pattern: E-modes
- Primordial gravitational waves & lensing
 - → pattern changing sign with parity: B-modes

(cf. talk JA.

Rubino-Martin)

E modes

Output

Description:

Output

Description:

Output

Description:

Description:

Output

Description:

Gradient: E polarization Curl: B polarization

CMB polarisation power spectrum

Intermediate angular scale polarisation spectra from Planck 2015

Planck's CMB angular power spectrum

CMB temperature anisotropies across scales: Planck/ACT/SPT

CMB introduction & status

Introduction
The CMB maps
The CMB angular power spectrum
Cosmology with CMB: Main features in primary anisotropies

Secondary anisotropies: CMB lensing

Secondary anisotropies: thermal Sunyaev-

Zel'dovich

Conclusions

Three regimes of CMB power spectrum

Large scales (>1°) primordial perturbations

Small scales (<1°) acoustic oscillations

Inflation scenario

At early times, a field, slowly evolving in its potential, with negative pressure drives a nearly exponential expansion

- It expands horizon scale to greater than observable universe size → Causality
- Its quantum fluctuations induce the primordial density perturbations
- If the roll down the potential is slow enough the spectrum of primordial fluctuation determined by the first two derivatives of the potential
- It predicts no measurable NonGaussianity

$$P_{s}(k) = A_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}}$$

Cosmology with CMB

Inflation (?) imprints quantum fluctuations that evolve and produce oscillations in the primordial plasma

CMB Large scales = Sach-Wolfe effect → *Initial conditions*

CMB Small scales = acoustic oscillations → *content of the Universe*

At small scales (< 1°)

Tight coupling between matter and radiation Gravitational instability vs pressure from radiation

Perturbation oscillate between

- Contraction phases, hotter & denser
- Expansion phases, less hot & dense

Periodic variation of CMB temperature frozen at recombination = **Acoustic oscillations**

Cosmology with CMB: Main features Acoustic peaks

Bouncing fluid causes peak structures in the power spectrum

Consider scale which had time only to collapse under gravity since big-bang

→ It is at maximum temperature → hot-spot

Scale = collapse speed x time allowed

- ~ sound speed x age of Universe @z~1000 ~ 1 degree
- → First acoustic peak

Second peak = collapse & expand to max Third peak = collapse & expand & collapse etc..

Expect peaks to be equally spaced

Cosmology with CMB: Main features Plateau

At large scales no Causal connexion → fluctuations directly related to initial density perturbations

- Sachs-Wolf effect → Gravitational redshift = photons climb out of density perturbations potential wells: cold spots → deep wells
- Integrated Sachs-Wolf effect: relative energy gain/loss of photons while crossing LSS → additional temperature fluctuations

(cf. Talk C. Hernandez-Monteagudo)

Cosmology with CMB

Cosmology with CMB

- Amplitude of the fluctuations: plateau
- Sound horizon: first-peak location
- Total matter: changes the contrast between the peaks
- Baryon density: ratio between peak heights (inertia)
- Reionisation optical depth: damping tail & large scale polarisation (marginally from lensing
- **H**₀: derived from above parameters
- Curvature: large scales (SW) small scales (lensing)
- Neutrino mass: small scales (lensing)

Universe content, Universe dynamics, clumpiness, promordial gravitational waves, reionisation epoch, ...

From data to cosmological parameters

Cosmology with CMB

$$C_{\ell}^{model} ? \equiv ? C_{\ell}^{data}$$

- Data: no maps but auto and cross frequency spectra @100, 143, 217GHz
- No foreground cleaning but masked galactic plane & sources and modeling of CMB & contaminants:
 - Residual galactic dust emission
 - Point sources (radio and IR)
 - Cosmic IR background (CIB)
 - Thermal and kinetic SZ

Cosmology with CMB

In terms of power spectrum, foregrounds are observed as additional components

$$C_{\ell}^{model} = C_{\ell}^{CMB} + C_{\ell}^{dust} + C_{\ell}^{cib+sz} + C_{\ell}^{poisson} + C_{\ell}^{ksz}$$

Cosmology with CMB Probability of model given data → likelihood

$$-\ln \mathcal{L}(\hat{\mathbf{C}}|\mathbf{C}(\theta)) = \frac{1}{2} (\hat{\mathbf{C}} - \mathbf{C}(\theta))^T \mathbf{\Sigma}^{-1} (\hat{\mathbf{C}} - \mathbf{C}(\theta)) + c$$

Data: angular spectra from three channels 100 143 and 217 GHz on a tailored multipole range Model with cosmological parameters (CAMB, CLASS) & foreground parameters

Parameter	Prior range	Definition		
A ^{PS}	[0, 400]	Contribution of Poisson point-source power to $\mathcal{D}_{3000}^{100\times100}$ for <i>Planck</i> (in μ K ²)		
A ^{PS} ₁₄₃	[0, 400]	As for A_{100}^{PS} but at 143 GHz		
A ₁₄₃	[0, 400]	As for A_{100}^{PS} but at 217 GHz		
APS	[0,400]	As for A_{100}^{PS} but at 143 × 217 GHz		
ACIB	[0, 200]	Contribution of CIB power to \mathcal{D}_{3000}^{217} at the <i>Planck</i> CMB frequency for 217 GHz (in μ K ²)		
APS 143×217	[0, 10]	Contribution of tSZ to $\mathcal{D}_{3000}^{143\times143}$ at 143 GHz (in μ K ²)		
A^{kSZ}	[0, 10]	Contribution of kSZ to \mathcal{D}_{3000} (in μ K ²)		
ξtSZ×CIB · · · · ·	[0, 1]	Correlation coefficient between the CIB and tSZ		
$A_{100}^{\mathrm{dust}TT}$	[0, 50]	Amplitude of Galactic dust power at $\ell = 200$ at 100 GHz (in μ K ²)		
	(7 ± 2)			
$A_{143}^{\text{dust}TT}$	[0, 50]	As for $A_{100}^{\text{dust}TT}$ but at 143 GHz		
	(9 ± 2)	1507		
$A_{143\times217}^{\mathrm{dust}TT}$	[0, 100]	As for $A_{100}^{\text{dust}TT}$ but at $143 \times 217 \text{ GHz}$		
	(21 ± 8.5)	144		
$A_{217}^{\text{dust}TT}$	[0, 400]	As for $A_{100}^{\text{dust}TT}$ but at 217 GHz		
217	(80 ± 20)	100		

Cosmoloy with CMB: Probability of model given data → likelihood

217GHz channel dominates cosmological constraints at small scales. Foreground ~ order magnitude of CMB

Cosmology with CMB: Base \(\Lambda \text{CDM model} \)

6 parameters

- Primordial spectrum
- Expansion rate
- Matter densities
- Reionisation optical depth

$$\mathcal{P}_{\mathcal{R}}(k) = A_s \left(rac{k}{k_0}
ight)^{n_s-1} \ \overline{\Omega_b h^2} \left(\Omega_c h^2
ight)$$

Hypotheses (relaxed for extensions to Λ CDM)

- Flat Universe
- No running spectral index
- No tensor contribution
- 3 neutrinos species
- Low neutrino mass

$$\Omega_k = 0$$

$$dn_s/d\ln k = 0$$

$$\mathcal{P}_t(k) = A_t \left(rac{k}{k_0}
ight)^{n_t} = 0$$

$$N_{eff} = 3$$

$$\sum m_{\nu} = 0.06 \ eV$$

Cosmology with CMB: Cosmological parameters

Base Λ CDM model = 6 parameters: baryon density, CDM density, Λ , A_s , n_s , τ 28(18) fold diminution in constraint volume vs WMAP9(+SPT) \rightarrow Error-bars reduced by a factor 2 when including polarisation in 2015

	Planck (CMB+lensing)		Planck+	Planck+WP+highL+BAO	
Parameter	Best fit	68 % limits	Best fit	68 % limits	
$\Omega_{ m b} h^2$	0.022242	0.02217 ± 0.00033	0.022161	0.02214 ± 0.00024	
$\Omega_{\rm c}h^2$	0.11805	0.1186 ± 0.0031	0.11889	0.1187 ± 0.0017	
$100\theta_{\mathrm{MC}}$	1.04150	1.04141 ± 0.00067	1.04148	1.04147 ± 0.00056	
τ	0.0949	0.089 ± 0.032	0.0952	0.092 ± 0.013	
$n_{\rm s}$	0.9675	0.9635 ± 0.0094	0.9611	0.9608 ± 0.0054	
$ln(10^{10}A_s)$	3.098	3.085 ± 0.057	3.0973	3.091 ± 0.025	
$\overline{\Omega_{\Lambda}$	0.6964	0.693 ± 0.019	0.6914	0.692 ± 0.010	
σ_8	0.8285	0.823 ± 0.018	0.8288	0.826 ± 0.012	
z _{re}	11.45	$10.8^{+3.1}_{-2.5}$	11.52	11.3 ± 1.1	
H_0	68.14	67.9 ± 1.5	67.77	67.80 ± 0.77	
Age/Gyr	13.784	13.796 ± 0.058	13.7965	13.798 ± 0.037	
$100\theta_{\star}$	1.04164	1.04156 ± 0.00066	1.04163	1.04162 ± 0.00056	
<i>r</i> _{drag}	147.74	147.70 ± 0.63	147.611	147.68 ± 0.45	
$r_{\rm drag}/D_{\rm V}(0.57)$	0.07207	0.0719 ± 0.0011			

Cosomological parameters

	WMAP	Planck 2013	Planck 2015	
$\Omega_b h^2$	0.02264 ± 0.00050	0.02205 ± 0.00028	0.02225 ± 0.00016	
$\Omega_b h^2$	0.1138 ± 0.0045	0.1199 ± 0.0027	0.1198 ± 0.0015	
H_0	70.0 ± 2.2	67.3 ± 1.2	67.27 ± 0.66	
$10^9A_{ m S}$	2.189 ± 0.090	2.196 ± 0.060	2.207 ± 0.074	
$n_{\rm S}$	0.972 ± 0.013	0.960 ± 0.007	0.964 ± 0.005	
τ	0.089 ± 0.014	0.089 ± 0.014	0.079 ± 0.017	0.055 ± 0. (Planck collab.
σ_8	0.821 ± 0.023	0.834 ± 0.027	0.831 ± 0.013	(Flatick Collab.

- Enormous precision: 0.03%; 0.6% & 1.1% on sound horizon; baryon and CDM densities
- Optical depth decreased → use of HFI low-l polarisation
- No obvious need for extensions nor for extra relativistic species

 $\Omega_c h^2$ $\ln(10^{10} A_{\rm S})$

Cosmological parameters

Tight limits on curvature (<0.005), neutrino mass (<0.194 eV), dark energy equ. state (-1.019), dark-matter annihilation, etc.

 $100\theta_{\mathrm{MC}}$

 $\Omega_b h^2$

From Planck TT: h=0.673 from Planck+BAO:

h=0.676

Cosmology with CMB: Inflation

Quantum origin of primordial fluctuations Simplest inflation predicts:

- Flat space → Planck 2015 : curvature ~ -0.004
- Adiabatic fluctuations → TE Planck 2015
- Nearly Gaussian statistics → Planck 2015

$$f_{\text{NL}}^{\text{local}} = 0.8 \pm 5.0, f_{\text{NL}}^{\text{equil}} = -4 \pm 43, \text{ and } f_{\text{NL}}^{\text{ortho}} = -26 \pm 21$$

• Deviation from scale invariant initial spectrum (0.96 < ns < 0.97) \rightarrow Planck 2015 : 0.9645 ± 0.0049

Scale invariant spectrum excluded at 7σ

Primordial gravity waves → quest & challenges of B-mode polarisation ? (cf. Talk JA. Rubino-Martin)

Cosmology with CMB: Summary

Simple cosmological model established?

- Spatially flat Universe
- Gaussian, adiabatic, close to scale invariant initial perturbations
- No evidence for running spectral index
- No evidence for dynamical DE
- No evidence for extra relativistic species

But

Some "small" tensions/disagreements: H_0 (cf. Talk J. Sorce), Ω_m and σ_8 from LSS tracers, slight "lensing excess" in the power spectrum, etc.

Prospects for CMB temperature

End of primary temperature anistropy era?

Next → Cosmology from small-scale CMB (lensing & t+kSZ effects) ... but limitations due to foregrounds

CMB secondary anisotropies

After recombination CMB photons travel "almost" unaffected ... Secondary effects additional or perturbed fluctuations

CMB introduction & status

Introduction

The CMB maps

The CMB angular power spectrum

Cosmology with CMB: Main features in primary anisotropies

Secondary anisotropies: CMB lensing

Secondary anisotropies: themal Sunyaev-

Zel'dovich

Conclusions

CMB Lensing

Weak gravitational lensing of the LSS DM distribution @z~2 disturbs the observed CMB → small variation of CMB anisotropies & length correlation

Typical deflection: 2.5'

$$\tilde{T}(\boldsymbol{x}) = T(\boldsymbol{x} + \boldsymbol{\nabla}\phi)$$
$$(\tilde{Q} \pm i\tilde{U})(\boldsymbol{x}) = (Q \pm iU)(\boldsymbol{x} + \boldsymbol{\nabla}\phi)$$

Smooths TT, TE and EE power Generates TT, TE, EE power at arcmin scales

Generates B-modes from E-modes

(cf. Talk B. Metcalf)

Reconstructed projected mass map

CMB lensing: Cross-correlation with Galaxy lensing

Detection @~3-4 f with ACT, Planck, SPT and DES, CFHTLenS, S82

CMB lensing

CMB lensing measurement at 40σ over 70% of the sky Amplitude constrained to 2.5% (error-bars improved by factor ~2) Lensing x B-modes detected at ~ 10σ Planck collab. 2015

CMB lensing

Lensing probes clustering of matter and growth rate → helps breaking degeneracy in CMB

Give access to neutrino mass, curvature, dark energy Complements LSS surveys to probe further dark energy

CMB introduction & status

Introduction

The CMB maps

The CMB angular power spectrum

Cosmology with CMB: Main features in primary anisotropies

Secondary anisotropies: CMB lensing

Secondary anisotropies: thermal Sunyaev-Zel'dovich

Conclusions

The SZ effect: CMB Spectral

The SZ "survey" revolution

-160

-320

00

Three Planck catalogs:

ESZ @2011 (189 clusters)

PSZ1 @2013 (1227 SZ sources)

PSZ2 @2014 (1653 SZ sources)

Szcluster-db@IAS:2690 SZ sources incl. 1750 with z

What are the properties of SZ Planck clusters

Nearly all known clusters accessible to Planck were detected.

Planck detected hundreds of candidates most of them confirmed as new clusters

A very large follow-up effort to confirm, measure redshift & study SZ canditates/sources:

- XMM-Newton programmes (Pl. M. Arnaud, Pl. E. Pointecouteau)
- NOT spectroscopic follow-up (PI. H. Dahle)
- RTT (PI. R. Sunyaev)
- ENO follow-up (PI. J.A. Rubino-Martin)
- MPG2-2.m/WFI (PI. S. White)
- ESO-LP (PI. N. Aghanim)
- MEGACAM (Pl. G. Pratt & van der Burg et al 2015)
- Chandra-Planck Legacy programme follow up the ESZ clusters (X-ray Visionary programme, Pl. C. Jones + Guaranteed HRC time Pl. S. Murray)
- MACS-Planck radio-halo cluster project (PI. C. Ferrari, ATCA & GMRT)
- NIKA2-LP (PI. F. Mayet & J. Macias-Perez)
- AMI (Pl. A. Lasenby)

•

Cosmological parameters with cluster counts

Volume element & growth rate changed with cosmology

Number counts & evolution of mass function → constrain cosmological parameters: normalisation, DM, DE, ...

SZ catalog: properties

Distribution in the M–z plane of Planck SZ clusters compared with those of SZ & X-ray surveys

SZ selected clusters \rightarrow no redshift dimming \rightarrow quasi mass-selected Planck: Largest catalog of massive clusters $M_{med} = 4.3 \times 10^{14} M_{sun}$ (< $1.5 \times 10^{15} M_{sun}$) \rightarrow Access to high M – z region: less sensitive to gas modeling & rare objects SPT & ACT catalogs: higher z & lower masses

Cosmology with SZ from Planck: Cluster number counts

Compare observed clusters to models

Likelihood: Probability of observed number counts given prediction from theory & survey characteristics

$$\frac{dN}{dz} = \int d\Omega \int dM_{500} \hat{\chi}(z, M_{500}, l, b) \frac{dN}{dz dM_{500} d\Omega}$$

Mass function: number of DM halos from simulations

Cosmology sample: constructed from the full Planck catalog

Selection function: survey characteristics (noise, depth, ...) from noise maps

Scaling SZ-mass: relating SZ observable to halo mass

Sample: Compromise between large number of clusters and high purity

- → Selection in S/N on 65% cleanest sky
- → 439 clusters @S/N≥6

Selection function: Completeness depend on detection-filter size & position on the sky

$$\chi_{\text{erf}}(Y_{500}, \theta_{500}, l, b) = \frac{1}{2} \left[1 + \text{erf}\left(\frac{Y_{500} - X \,\sigma_{Y_{500}}(\theta_{500}, l, b)}{\sqrt{2} \,\sigma_{Y_{500}}(\theta_{500}, l, b)} \right) \right]$$

Cosmological parameters with counts: Scaling relation

Relate global/observed quantities and mass. Complex physics → simplified assumptions:

- Hydrostatic equilibrium
- No pressure from relativistic particles, magnetic fields, etc
- No multi-temperature structure

- X-rays: Stronger dependence on non-gravitational physics \rightarrow High scatter L_x-M relation & bias
- SZ: Weaker dependence → Low scatter Y_{S7}-M relation (~unbiased selection)

Cosmological parameters with counts: Scaling relation

 Y_{sz} measured in Planck & Y_{x} from X-ray data $[Y_{x} \rightarrow M_{x}]$ and $Y_{x} \rightarrow Y_{sz} - M_{x}$

 $M_x = (1-b) M_{sim}$ or $(1-b) M_{wi}$ [b: ratio hydro to true mass]

$$E^{-\beta}(z) \left[\frac{D_{\rm A}^2(z) \, \bar{Y}_{500}}{10^{-4} \, {\rm Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) \, M_{500}}{6 \times 10^{14} \, {\rm M}_{\rm sol}} \right]^{\alpha}$$

 $Y_{s7} - M_x$ rescaled relation

- Hydrodynamical simulations → (1-b) ~0.7 to 1.0
- Weak Lensing from WtG \rightarrow (1-b)~0.68 (von der Linden et al. '14)
- Weak Lensing from PSZ2LenS → (1-b)~0.76 (Sereno et al. '17)
- Weak Lensing from CCCP \rightarrow (1-b)~0.78 (Hoekstra et al. '15)
- CMB lensing mass \rightarrow (1-b)~1 (Planck collab. '16) & many others
- + Mass estimates from velocity dispersions

Cosmological parameters from Planck SZ counts: CMB/cluster tension on σ_8

Sample: 189 @S/N≥7 Rescaling to sims

~3σ tension between CMB and SZ counts

Planck 2016:

Larger: 439 @S/N≥6 → Not limited by statistical errors

Rescaling to weak lensing

- → Tension remains
- → CMB preferred mass bias (1-b)~0.58

Cosmological parameters with SZ power spectrum from Planck

Planck tSZ C, from 3 deg. to 10'

Likelihood on cosmological parameters & CIB/PS amplitude

$$C_{\ell}^{model} = C_{\ell}^{SZ} + C_{\ell}^{cib} + C_{\ell}^{PS}$$
$$C_{\ell}^{SZ} = C_{\ell}^{SZ}(\Omega_M, \sigma_8)$$

Marginalised likelihood distribution for tSZ and CMB analyses → tension

Higher order moments (Skweness & bispectrum) $\rightarrow \sigma_8 = 0.74$ to 0.78

Cosmological parameters from SZ, X-ray & lensing surveys

σ₈-Ω_m from X-ray luminosity function of REFLEX-II

→ agreement with Planck
SZ clusters (Planck Collab. '16)

→ tension with CMB

 σ_8 - Ω_m from weak lensing \rightarrow ~2 σ tension regardless of cosmological priors (Heymans et al. '13; Hildebrandt et al. '17)

Reducing Planck SZ – CMB tension?

- Missing half massive low z clusters
- Change scaling relation
- Change in bias

- Variation of initial spectrum
- Change transfer function, e.g. neutrinos

Cosmological parameters from Planck SZ counts (revisited)

SZ counts same as Planck collab, '16
Prior on mass bias from CCCP lensing (1-b)=0.78
Sampling cosmology & mass scaling parameters

Planck-HFI low-I polarisation rather than WMAP prior or LFI polarisation

- → **T** reduced from 0.089 to [0.05, 0.06] (Planck collab. '16,)
- → Reduced tension between CMB and astrophysics probes of the reionisation

Evolution of τ from CMB and astrophysical probes (high-z galaxy UV/IR fluxes, GP, etc)

(cf. Talk J.A. Rubino-Martin)

Cosmological parameters from Planck SZ counts (revisited)

SZ counts same as Planck collab. '16
Prior on mass bias from CCCP lensing (1-b)=0.78
Sampling cosmology & mass scaling parameters

Planck-HFI low-I polarisation rather than WMAP prior or LFI polarisation

 \rightarrow **T** = **0.055** ± **0.009** (Planck collab. '16)

Cosmological parameters from Planck SZ counts (revisited)

SZ counts same as Planck '16 Prior on mass bias from CCCP lensing (1-b)=0.78 Sampling cosmology & mass scaling parameters

From WMAP prior on τ to Planck-HFI low-I polarisation

- $\rightarrow \tau = 0.055 \pm 0.009$ (Planck collab. '16)
- → SZ constraints unchanged

Tension on σ_8 between Planck CMB and SZ cluster counts reduced from ~2.4 σ to ~1.5 σ

Cosmology with combined SZ counts & spectrum from Planck

Complementary tSZ counts & C_1 SZ-CMB discrepancy from counts & pow.spec. ~1.6 σ on σ_8

Degeneracy between σ_8 and mass bias \rightarrow To reconcile CMB and ...

- tSZ counts → (1-b)~0.62 needed
- tSZ counts & C₁ → (1-b)~0.64 needed

Cosmological parameters with combined SZ counts & spectrum from Planck

Salvati et al. '17

Including massive $\overset{\Omega_{m}}{\text{neutrino}}$

- → reduced constraining power
- \rightarrow (1-b)~0.66 needed to reconcile CMB and tSZ counts & C₁

 $\Sigma m_v < 1.53 eV \text{ from tSZ counts & C}_l$ alone ($\Sigma m_v < 0.49 eV \text{ from CMB alone}$)

 $\Sigma m_v < 0.19eV$ from CMB+ tSZ probes

Conclusions

- CMB temperature anisotropies well measured
 - Down to 5' over whole sky & down to 1' on large areas
 - Planck/ACT/SPT complementary for low-z cosmological probes (SZ, lensing)
- Base Λ CDM model continues to be a good fit to CMB data
- Secondary CMB (tSZ & lensing) actual cosmology probes
- Next challenges: small-scale CMB, combinations/correlations with LSS; resolving/understanding tension between CMB and others

•

- CMB E-mode polarisation measured over whole sky
 - affected by systematics → progress expected from Planck 2018 release
 - ACTpol & SPTpol will cover small scales on large areas
- B-mode from lensing now detected (BICEP2, POLARBEAR, Planck, SPTpol, etc.)
- Next challenges: B-mode @large scales from primordial gravitational waves

Cosmological test with SZ clusters: T_{CMR} evolution

Departure from adiabatic expansion

- Variation of fundamental constants
- non-conservation of photons (e.g. decaying DE)

$$T_{\text{CMB}}(z) = T_{\text{CMB}}(z=0) (1+z)^{1-\beta}$$

Use of SZ from a few clusters (e.g.

Rephaeli '95, Batistelli et al. '02)

Planck: 813 clusters (z<1; 20 bins)

 T_{CMB} compared (no fit) to adiabatic expansion for T_{o} =2.726K Derived β

Cosmological test with SZ clusters: T_{CMB} evolution

$$\beta = 0.009 \pm 0.017 \qquad 813 \ \text{binned Planck}$$
 clusters (Hurier et al. '13)
$$\beta = 0.017 \pm 0.003 \qquad 158 \ \text{individual}$$
 SPT clusters (Saro et al. '14)
$$\beta = 0.022 \pm 0.018 \qquad 104 \ \text{individual}$$
 Planck clusters (Luzzi et al. '15)

+ atomic/molecular lines @z>1

$$\beta = 0.006 \pm 0.013$$

Tightest constraints on deviation from linear evolution → **Adiabatic expansion**

Implied constraints w_{eff} in decaying DE

model (Lima '96; Jetzer et al. '11) $\rightarrow w_{eff} = -0.995 \pm 0.011$

Hurier et al. '13

Noterdaeme et al. '11)