Simulating the formation of structure in the Universe

Raul E. Angulo

How can we explain the very diverse universe we observe and use it to infer fundamental physics

Explaining the structure in the Universe is a solvable (but very hard) problem.

Numerical simulations are the most accurate way to bridge 13.7 billion years of nonlinear evolution

Simulations have been essential in the establishment of the "cosmology standard model"

- → Background
- → Methods
- → Current State of the Art
- → The next decade
- → Open questions & challenges

Assumptions made in the simplest case

Usually referred to as dark-matter (gravity) only simulations

GR at the background level

Dark Matter as the main gravitating ingredient

Newtonian Gravity as the only force to consider

Evidence supporting the simplest case

Our problem is reduced to simulating the evolution of a

initially smooth, cold, with zero cross-section, collisionless

fluid under the effect of self-gravity in an expanding Universe.

Simply solve newton's law for many googolplexian particles

Simulating structure formation in the Universe

Most of the mass in the Universe is in the form of an unknown elementary particle: the Cold Dark Matter

CDM forms a "sheet": A continuous 3D surface embedded in a 6D space

The Vlassov-Poisson Equation

$$0 = \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\mathbf{v}}{a^2} \cdot \frac{\partial f}{\partial \mathbf{v}} - \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \Phi}{\partial \mathbf{x}}$$
$$\nabla^2 \Phi = \frac{4\pi G}{a} \int f \mathrm{d}^3 v_{\mathrm{d}}$$

CDM Sheet Properties

- → phase-space is conserved along characteristics
- → It can never tear
- → It can never intersect

- → Background
- → Methods
- → Current State of the Art
- → The next decade
- → Open questions & challenges

Solving Vlassov-Poisson via a Montecarlo sampling and coarse-graining

The "method of characteristics" is used to solve the partial differential equation that the VP is.

Standard approach to solving the VP equation:

Montecarlo Sampling and coarse graining the CDM distribution function

The computational challenge

Modern cosmological simulations pose hard problems in terms of execution time, RAM consumption, and data handling

CPU and load Imbalances

Quadrillion force calculations with large anisotropies and very different dynamical timescales

RAM

Above hundreds of Tb of RAM necessary to hold basic information Additional requirements memory imbalances and data analyses

I/O & Disk Space

Data products can be en excess of dozens of Petabytes.

We require a combination of extremely efficient and scalable algorithms, and a large Supercomputer!

MXXL

- L = 3000 Mpc/h
- N = 6720³ particles
- E = 10 kpc/h
- M = 6.18x10⁹ Msun/h

The problem is to estimate the gravitational interaction of A set of N discrete particles

For each particle, we need the add up the contribution of N-1 particles. Thus, this is a NxN problem!

The problem is to estimate the gravitational interaction of A set of N discrete particles

The decision to open a node is given by a desired accuracy. The efficiency depends on the clustering but ~ N log(N), allows Individual timesteps, good load/cpu balances.

The problem is to estimate the gravitational interaction of A set of N discrete particles

 $\nabla^2 \phi = \frac{4\pi G}{a} \left(\rho - \bar{\rho}\right)$

Interpolation Methods

- 1) Nearest Grid Point (0th order)
 - 2) Clouds-in-Cells (1st order)
- 3) Triangular shaped cloud (2nd order)

$$\begin{split} \nabla^2 \phi \propto \delta & \Leftrightarrow & \tilde{\phi} \propto -\tilde{\delta}/k^2 \\ \mathbf{a} = - \boldsymbol{\nabla} \phi & \Leftrightarrow & \tilde{\mathbf{a}} \propto -\frac{i\mathbf{k}}{k^2} \tilde{\delta} \end{split}$$

Fast, easy to parallelise, portable FFT libraries, scales as N; but bad load balance, limited spatial resolution, global timesteps

The problem is to estimate the gravitational interaction of A set of N discrete particles

Alternatives

- 1) Adaptive Mesh refinement
- 2) Ewald summation for trees

3) Direct Summation

4) Fast Multipole methods

$$\phi_{\mathbf{k}} = \phi_{\mathbf{k}}^{\text{long}} + \phi_{\mathbf{k}}^{\text{short}}$$

$$\phi^{\text{short}}(\mathbf{x}) = -G \sum_{i} \frac{m_{i}}{r_{i}} \operatorname{erfc}\left(\frac{r_{i}}{2r_{s}}\right)$$

$$\phi_{\mathbf{k}}^{\text{long}} = \phi_{\mathbf{k}} \exp(-\mathbf{k}^{2} r_{s}^{2})$$

Number of particles is not precision

Force and time integration parameters can change execution times by factors of a few

Number of particles is not precision

Errors on the power spectra induced by numerical errors

Computational domain decomposition

MPI Task #1 MPI Task #2 MPI Task #3 MPI Task #4

MPI Task #1 MPI Task #2 MPI Task #3 MPI Task #4

Dark Matter and galaxies

A realistic galaxy formation modelling on a 3Gpc/h simulated box at z=0

DARK MATTER

GALAXIES

Different galaxy catalogues in the MXXL simulation trace the BAO features with a scale-dependent bias

POWER SPECTRA OF THE GALAXY DISTRIBUTION AT Z=0 FOR DIFFERENT SPACE DENSITIES

- → Background
- → Methods

Ourrent State of the Art

- → The next decade
- → Open questions & challenges

CLUSTER Cosmic Full Box < 0.2 Mpc/h Millennium-XXL Phoenix A-1 GALACTIC Zoom In 250 kpc 100 kpc Aquarius A-1 GHalo

105

Соѕміс			1				
Name	Code	L _{box}	N_p	m _p	$\epsilon_{ m soft}$	${ m N}_{ m halo}^{>100p}$	ref.
		$[h^{-1}Mpc]$	[10 ⁹]	$[h^{-1}M_\odot]$	[h ⁻¹ kpc]	[10 ⁶]	
DEUS FUR	Ramses-Deus	21000	550	1.2×10^{12}	40.0^{\dagger}	145	[259]
Horizon Run 3	Gotpm	10815	370	2.5×10^{11}	150.0	~ 190	[260]
Millennium-XXL	Gadget-3	3000	300	6.2×10^{9}	10.0	170	[220]
Horizon-4∏	RAMSES	2000	69	$7.8 imes 10^9$	7.6^{+}	~ 40	[261]
Millennium	Gadget-2	500	10	$8.6 imes 10^8$	5.0	4.5	[181]
Millennium-II	Gadget-3	100	10	6.9×10^{6}	1.0	2.3	[87]
MultiDark Run1	Art	1000	8.6	8.7×10^{9}	7.6^{\dagger}	3.3	[36]
Bolshoi	Art	250	8.6	1.4×10^8	1.0^{+}	2.4	[262]
[†] For AMR simulation	is (Ramses, Art) $\epsilon_{ m s}$	oft refers to the	highest resol	ution cell width.			
Cluster							
Name	Code	L _{hires}	N _{p,hires}	m _{p,hires}	$\epsilon_{ m soft}$	$N_{sub}^{>100p}$	ref.
		[h ⁻¹ Mpc]	[10 ⁹]	$[h^{-1} M_\odot]$	[h ⁻¹ kpc]	$[10^3]$	
Phoenix A-1	Gadget-3	41.2	4.1	6.4×10^{5}	0.15	60	[263]
GALACTIC							
Name	Code	L _{hires}	N _{p,hires}	m _{p,hires}	$\epsilon_{ m soft}$	$N_{sub}^{>100p}$	ref.
		[Mpc]	[10 ⁹]	[M _☉]	[pc]	[10 ³]	
Aquarius A-1	Gadget-3	5.9	4.3×10^{9}	1.7×10^{3}	20.5	82	[45]
GHalo	Pkdgrav2	3.89	2.1×10^9	1.0×10^3	61.0	43	[32]
Via Lactea II	Pkdgrav2	4.86	1.0×10^9	4.1×10^{5}	40.0	13	[44]

DM-only simulations

Kuhlen, Vogelsberger, Angulo 2012

The abundance of CDM collapsed structures

Simulations resolve the mass range relevant for galaxy formation If written in the adequate variables, the abundance is universal

The inner structure of Dark Matter halos

Springel et al 2008

Smooth distribution

Density profile is described by NFW/Einasto functional form, independent of mass

Springel et al 2008

The inner structure of Dark Matter halos

Springel et al 2008

The inner structure of Dark Matter halos

³⁸ Springel et al 2008

Structure formation for a 100GeV DM particle

Angulo & White 2010

Structure formation at the free streaming mass

1.4 kpc – 50 Msun

(Angulo, Hahn, Ludlow, Bonoli 2016)

Structure formation at the free streaming mass

- → Background
- → Methods
- → Current State of the Art
- → The next decade:
 i) New VP solvers &
 ii) Cosmological Parameters
- → Open questions & challenges

Standard approach to solving the VP equation:

Montecarlo Sampling and coarse graining the CDM distribution function

Tree Algorithms Multipole decomposition

Every single numerical simulation out there (even SPH/AMR) relies on the same assumption

$$\Phi(\mathbf{x}) = -G\sum_{i} \frac{m_i}{\left[(\mathbf{x}_i - \mathbf{x})^2 + \varepsilon^2\right]}$$

 $d^2 \mathbf{x}$

 d^2

Two examples where the N-body fails:

Two fluids with distinct primordial power spectra
 Artificial fragmentation of filaments

$$\Phi(\mathbf{x}) = -G\sum_{i} \frac{m_i}{\left[(\mathbf{x}_i - \mathbf{x})^2 + \varepsilon^2\right]}$$

Two competing requirements For setting epsilon

> i) A *large* ε value to reduce noise.

ii) A small ϵ value to resolve structures

The evolution of the fine and coarse grained distribution functions are NOT equivalent.

Two fluids with distinct primordial power spectra
 Artificial fragmentation of filaments

$$\Phi(\mathbf{x}) = -G\sum_{i} \frac{m_i}{\left[(\mathbf{x}_i - \mathbf{x})^2 + \varepsilon^2\right]}$$

Two competing requirements For setting epsilon

i) A *large* ε value to reduce noise.

ii) A small ϵ value to resolve structures

Tessellation of the DM fluid with phase-space Lagrangian elements

(Abel+ 2012, Shandarin+ 2012, Kaehler+ 2013, Hahn+ 2013, Angulo+ 2013, Hahn & Angulo 2014)

Warm Dark Matter structure formation without noise (Angulo, Hahn, Abel 2013b)

New sheet-based simulation code with reduced collisionality and noise

Warm Dark Matter structure formation without noise (Angulo, Hahn, Abel 2013b)

New sheet-based simulation code with reduced collisionality and noise

(No need for a "softening length")

Self-gravitating filament plus sphericallysymmetric top-hat perturbation

Standard N-body Simulation

Adaptively refined Lagrangian maps

The problem of optimally exploiting future and current surveys

	Input Cosmology	
DARK MATTER	Perturbation theory	– PT breaks quickly – Higher order expansions loose predictive power
to IMpe/h] GALAXIE	Analytic function	 Galaxy formation physics cannot be fully captured
60 STATISTIC	s Correlation functions	 Limited set of observables Hard to model survey setup Unknown likelihoods
	Cosmology	

SHAM galaxies with $n=10^{-3} (h/Mpc)^{3}$

SHAM galaxies with $n=10^{-3} (h/Mpc)^{3}$

The power spectrum of SHAM galaxies with $n=10^{-3}$ Mpc/h (including nonlinear RSD and nonlinear bias) is predicted at percent level, down to k = 10 h/Mpc

LSS forward modelling applied to lensing

ANALYSIS OF CFHTLenS USING MILLIONS OF SIMULATED UNIVERSES

Angulo & Hilbert 2015

R

Open Problems & Challenges

Observations are way ahead of theory, how can we catch up?

 \rightarrow No simulation, even gravity only, can simultaneously resolve the volume and host halos of current surveys.

→ How can we increase the accuracy and precision of Nbody Simulations?

→ We have a reasonably accurate theory of galaxy formation and nonlinear structures, but it is computationally slow... How do we take advantage of this in cosmological inferences?

Open Problems and Challenges

Can we resolve the full hierarchy of structures?

→ Maybe, after 2050...

 \rightarrow Resolve the kinematic of stars in the smallest dwarf galaxies

- → What is the origin of nonlinear density profiles?
- \rightarrow Improved predictions for the phase-space structure

 \rightarrow Improved modelling of the microphysical properties of DM (and neutrinos).

Open Problems and Challenges

The impact of hydrodynamics/galaxy formation

→ What are the degeneracies between galaxy formation and Cosmology? How can we break those?

→ Under what conditions do baryons affect the central density of galaxies, and the orbits/dynamical friction of galaxies? (i.e. when gravity-only break?)

→ How realistic are current implementations of stellar/AGN feedback (hydrodynamical decoupling, energy injection) of what happens in molecular clouds? (Better treatment of radiation/non-thermal pressure support, non resolved turbulence, etc.)

Open Problems and Challenges

How to efficiently use the next generation of supercomputer facilities?

Future supercomputers will have ~1e5-1e6 CPUs, little memory per node, and enhanced by co-processors. Future codes will need different parallelisation strategies, have some redundancy, and mixed algorithms.

 \rightarrow Analysis will be impossible in postprocessing. We need to inline everything in runtime.

→ Data products will be huge... how to best handle and distribute it?