the Cosmic Web:

Structure & Dynamics

Rien van de Weijgaert, Canary Islands Cosmology School, Fuerteventura, Sept. 2017

on scales of ~0.1-500 millions of lightyears

complex weblike pattern

in which matter, gas & galaxies are organized in

 Compact clusters,
 elongated filaments
 flattened walss around
 cosmic voids

Cosmic Web

Complex Patterns in the Cosmos

Cosmic Web

MMF/Nexus+ tracing of filaments

inherent multiscale character of filamentary web

Hidding, Cautun, vdW et al. 2018

Complex macroscopic patterns in nature arise from the action of basic, often even simple, physical forces and processes. In many physical systems, the spatial organization of matter is one of the most readily observable manifestations of the nonlinear collective actions forming and moulding them.

The richly structured morphologies are a rich source of information on the physical forces at work and the conditions under which the systems evolved. In many branches of science the study of geometric patterns has therefore developed into a major industry for exploring and uncovering the underlying physics

Balbus & Hawley 1998

Cosmic Web

Setting the Scene

A million galaxies

Shane-Wirtanen map:

On the basis of the Shane-Wirtanen counts,

P.J.E. Peebles produced a map of the sky distribution of 1 million galaxies on the sky:

• Clearly visible are clusters

• hint of filamentary LSS features, embedding clusters

local Cosmic Web: 2MRS

Courtesy: Francisco Kitaura

Cautun et al. 2014

Cosmic Web Characteristics

anisotropic structure:

- filaments dominant structural feature elongated
- sheets/walls flattened

multiscale nature

- structure on wide range of scales
- structures have wide range of densities

overdense-underdense asymmetry

- voids: underdense, large & roundish
- filaments & walls: overdense, flattened/elongated
- clusters: dense, massive & compact nodes

• complex spatial connectivity

- all structural features connected in a complex, multiscale weblike network

Pisces-Perseus Supercluster

Void Population Local Universe

mean KIGEN-adhesion reconstruction (2MRS)

0 -60 -60 Columba Canis Major Void Canis Major Void Void AS301 -40 AS639 -40 Eridanus -20 -20 Gemini A1367 Void Fornax h-1 Mpc h-1 Mpc 0 Sculptor CVn Void Void Norma Coma Local Loca Void Virgo 20 20 Void Aquarius Void Hercules Microscopium Void Void 40 40 CrB Void Trans Tully 60 Void 60 -60 -40 -20 0 20 40 60 60 40 20 0 -20 -60 -40 h⁻¹ Mpc h⁻¹ Mpc

Hidding, Kitaura, vdW & Hess 2016/2017

Cosmic Web: Connectivity

MMF/Nexus Cautun et al. 2013, 2014

Stochastic Spatial Pattern

- Clusters,
- •Filaments &
- Walls

around

Voids

in which matter & galaxies

have agglomerated

through gravity

The Cosmic Web

Physical Significance:

- Manifestation mildly nonlinear clustering: Transition stage between linear phase and fully collapsed/virialized objects
- Weblike configurations contain cosmological information: eg. Void shapes & Alignments
- Cosmic environment within which to understand the formation of galaxies.

Cosmic Web

Dynamics & Formation: Program

Cosmic Web – Formation, Evolution, Dynamics

- the Mechanism
- Gravitational Instability
- Anisotropic Collapse
- Formation of filaments and walls
- Weaving the Web
 Connection Clusters, Filaments and Walls
- Hierarchical Formation from small to the Megaparsec Cosmic Web
- Anisotropy & Hierarchy the Adhesion formalism
- Phase Space

- Multistream structure
 - Caustics & Catastrophes
 - Skeleton of the Cosmic Web

• Voids

- Void Hierarchy
- the evolving soapsud

Gravitational Instability

Primordial Universe

global representation cosmic surface last scattering: the world inside out

 ΔI

 $\simeq 10^{-5}$

Temperature Map CMB radiation:

Tiny variations in primordial temperature, reflecting tiny inhomogeneities in energy density of $\mathbb{P} \sim 10^{-5}$ K at recombination epoch, 379,000 yrs after Big Bang

Density Perturbation Field:

Gravity Perturbations

Gravity Perturbations

$$\mathbf{g}(\mathbf{r},t) = -\frac{1}{a}\nabla\phi = \frac{3\Omega H^2}{8\pi}\int \mathrm{d}\mathbf{x}'\,\delta(\mathbf{x}',t)\frac{(\mathbf{x}'-\mathbf{x})}{|\mathbf{x}'-\mathbf{x}|^3}$$

The Universe should be Uniform: homogeneous & isotropic

Migration Streams of matter induced by gravity resulting from small perturbations

Millennium Simulation: LCDM 31.25 Mpc/h

Dark Matter, (~ 5.5x more than baryonic matter)

-Trans

(courtesy: Vírgo/V. Spríngel). without: not enough time to form structure in the Universe in 13.8 Gyrs

(cosmic web, clusters, galaxies, stars, ...)

z = 20.0 Formation **Cosmic Web:** simulation sequence (cold) dark matter (courtesy: Virgo/V. Springel). 50 Mpc/h

Dynamical Evolution Cosmic Web

- hierarchical structure formation
- anisotropic collapse
- establishing the connectivity
- void formation:

asymmetry overdense vs. underdense

the Cosmic Web:

evolution of walls & filaments

NEXUS/MMF Evolution Cosmic Web

t = 0.56 Gyrs

z = 8.70

Cautun et al. 2013

CGV:

on walls & filaments

- Mollweide sky projection
 matter distribution around CGV halos
- CGV halos embedded in walls
- Walls dominate void infrastructure
- substantial fraction in filaments (embedded in walls)
- active dynamical evolution of wall-filament goes along with active void galaxy halo evolution

Evolving Filament & Wall Network

Cautun et al. 2014
Walls & Filaments

Internal Diameter & Density Profiles

Cautun et al. 2014

Cosmic Web:

Evolutionary Trends

Web Mass Emigration

Cautun et al. 2014

Evolving Filament Population

Evolving Filament & Wall Densities

Filament population: Wall population: evolves continuously towards more dense filaments tenuous walls do not evolve into more dense walls

Cautun et al. 2014

Evolving Filament & Wall Diameters

Cosmic Web:

Halo Distribution

Halos in the Cosmic Web

Halos populating Filaments

Evolving Halo Population

Dynamics of the Cosmic Web:

Anisotropic Collapse & Zeldovich Formalism

$$\vec{x} = \vec{q} + D(t)\vec{u}(\vec{q})$$

$$\vec{u}(\vec{q}) = -\vec{\nabla}\Phi(\vec{q})$$

$$\Phi(\vec{q}) = \frac{2}{3Da^2H^2\Omega}\phi_{lin}\left(\vec{q}\right)$$

$$\rho\left(\vec{q},t\right) = \frac{\rho_u\left(t\right)}{\left(1 - D(t)\lambda_1\left(\vec{q}\right)\right)\left(1 - D(t)\lambda_2\left(\vec{q}\right)\right)\left(1 - D(t)\lambda_3\left(\vec{q}\right)\right)}$$

structure of the cosmic web determined by the spatial field of eigenvalues

 $\lambda_1, \lambda_2, \lambda_3$

Zel'dovich Formalism: Density Evolution

Density Profile through pancake, at moment of formation and shortly thereafter (multistream)

Cosmic Web Connectivity:

weaving the Cosmic Tapestry

Anisotropic

Gravitational Collapse

Formative agent of the Cosmic Web:

Tidal strain induced my the Megaparsec Matter Distribution:

- anisotropic collapse of structures
- connection clusters-filaments:

clusters main agent for stretching filaments

$$T_{ij}(\vec{r},t) = \frac{3\Omega H^2}{8\pi} \int d\vec{x} \ \delta(\vec{x},t) \left\{ \frac{3(x_i - r_i)(x_j - r_j) - |\vec{x} - \vec{r}|^2 \ \delta_{ij}}{|\vec{x} - \vec{r}|^5} \right\} - \frac{1}{2} \Omega H^2 \delta(\vec{r},t) \ \delta_{ij}$$

Tidal Shaping of the Cosmic Web

Tidal Constraints:

Example: elongated filamentary feature

Constrained Field:

$$f(\mathbf{x}) = \int \frac{d\mathbf{k}}{(2\pi)^3} \left[\hat{f}(\mathbf{k}) + P(k)\hat{H}_i(\mathbf{k})\xi_{ij}^{-1}(c_j - \tilde{c}_j)\right] e^{-i\mathbf{k}\cdot\mathbf{x}}$$

Tidal Shaping of the Cosmic Web

Cosmic Web

Hierarchical Evolution

CGV halo & web evolution

Rieder et al. 2013

- small objects emerge & collapse first,
- then merge with other clumps
- * while forming larger objects in hierarchy

Hierarchical Filament Formation

Void Hierarchy: "Lagrangian" view: void-dominated hierarchical development **Cosmic Web** Platen & vdW 2004 Sheth & vdW 2004 Aragon-Calvo & Szalay 2012

Hierarchical Dynamics of the Cosmic Web:

Adhesion

Hidding, vdW et al. 2012, Hidding, vdW et al. 2016 Hidding, vdW et al. 2018

Adhesion Approximation

Velocity & Gravity Potential

 $\vec{u}(\vec{q}) = \vec{\nabla} \Phi(\vec{q})$

Burger's Equation: Hopf Solution

$$\frac{\partial \vec{u}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla}\right) \vec{u} = \nu \, \nabla^2 \vec{u}$$

$$\Phi(\vec{x},t) + \frac{x^2}{2} = \max_{q} \left[\left(t \Phi_0(q) - \frac{q^2}{2} \right) + \vec{x} \cdot \vec{q} \right]$$

Burger's Equation: Hopf Solution

Hidding, vdW et al.

Convex Hull – Legendre transform

Hidding, vdW et al.

Hierarchical Web Evolution:

Adhesion simulation buildup Cosmic Web

Johan Hidding 2012

Eulerian vs. Lagrangian weblike geometry

Hidding, vdW et al.

Lagrangian – Eulerian Cosmic Web Delaunay- Voronoi Tessellations

Hidding, vdW et al.

Cosmological Sensitivity Cosmic Web

the morphology of the weblike network is highly sensitive to the underlying cosmology

 $P(k) \sim k^{-1.5}$

Hidding 2012/2014

 $P(k) \sim k^{-2.0}$

Cosmic Web

Phase-Space Evolution

Tessellation Deformation & Phase Space Projection

Translation towards Multi-D space:

- Look at deformation of initial tessellation
- each tessellation cell represents matter cell
- evolution deforms cell
- once cells start to overlap, manifestation of different phase-space matter streams

Simulation – Discrete Particles

Simulation – Mass Elements

Phase Space Evolution

Dark Matter Phase Space sheet:

3-D structure projection of a folding DM phase space sheet In 6-D phase space

- Shandarin 2010, 2011
- Neyrinck et al. 2011, 2012 Origami
- Abel et al. 2011

Evolving matter distribution in position-velocity space – 1D

Phase Space Evolution

Phase-Space Evolution

Tessellation Deformation & Phase Space Projection

Conservation of mass Translation towards (continuity eqn.): Multi-D space: $\rho(\vec{x},t) = \left| J(\vec{x},\vec{q}) \right|^{-1} \rho\left(\vec{q}\right) = \left| \frac{\partial \vec{x}}{\partial \vec{q}} \right|^{-1} \rho\left(\vec{q}\right)$ - Look at deformation of initial tessellation - each tessellation cell t=t₀ represents matter cell $\rho(\vec{x},t_1) = \frac{V_0}{V} \rho\left(\vec{q},t_0\right)$ - evolution deforms cell t=t₁

Monostream **Density Evolution**

(Cosmic) ORIGAMI

Evolution of dynamical system: Phase-space folding – Cosmic Origami

Mark Neyrinck, Bridget Falck

Multistream Density Estimates

Cosmic Web Stream Density

Translation towards Multi-D space:

Shandarin 2012 Abel, Hahn & Kaehler 2012 Falck, Neyrinck et al. 2012

Cosmic Web Skeleton:

Phase-Space Caustics Caustic Conditions

Hidding, Shandarin, vdW. 2014 Feldbrugge, vdW et al. 2017a Feldbrugge, vdW et al. 2017b

Shandarin & Zeldovich 1989

Illustration of the formation of caustics due to

streaming paths of light through deforming medium

Lagrangian space: A₂ contours

Eulerian space: folds & cusps

Zel'dovich Approximation

$$\rho\left(\vec{q},t\right) = \frac{\rho_{u}\left(t\right)}{\left(1 - D(t)\lambda_{1}\left(\vec{q}\right)\right)\left(1 - D(t)\lambda_{2}\left(\vec{q}\right)\right)\left(1 - D(t)\lambda_{3}\left(\vec{q}\right)\right)}$$

structure of the cosmic web determined by the spatial field of eigenvalues

 $\lambda_1, \lambda_2, \lambda_3$

Singularities & Catastrophe: Deformation Field

Hidding, Shandarin & vdW 2014

Caustic Conditions

In	Lagrangian	space L	(coordinates	q),
----	------------	-----------	--------------	-----

a singularity forms in a manifold $M \subset L$ at location q_s when at q_s ,

- the deformation tensor eigenvalue $\lambda_i(q_s)$
- the corresponding eigenvector $\vec{v}_i(q_s)$

when at least one nonzero tangent vector \vec{T} such that

$$\{1-D(t)\lambda_i(q_s)\} \quad \vec{v}_i^*(q_s)\cdot\vec{T} = 0$$

₽

eg., A_3 caustic – cusp singularity – emerges where:

 \vec{n}^{λ}

Feldbrugge, vdW et al. 2017a

Catastrophic Spine of (2D) Cosmic Web

Eulerian

Feldbrugge, Hidding, vdW 2015

Skeleton (3D) Cosmic Web:

A₃ surfaces - cusps

Skeleton (3D) Cosmic Web: A₃ surfaces - cusps

Feldbrugge, vdW et al. 2017b

Skeleton (3D) Cosmic Web: A₄ spine - swallowtails

Skeleton (3D) Cosmic Web: A₄ spine - swallowtails

Skeleton (3D) Cosmic Web: catastrophic connections

Skeleton (3D) Cosmic Web: catastrophic connections

Singularity	Singularity	Feature in the	Feature in the
class	name	2D cosmic web	3D cosmic web
A_2	fold	collapsed region	collapsed region
A_3	cusp	filament	wall or membrane
A_4	swallowtail	cluster or knot	filament
A_5	butterfly	not stable	cluster or knot
D_4	hyperbolic/elliptic	cluster or knot	filament
D_5	parabolic	not stable	cluster or knot

Skeleton (3D) Cosmic Web:

A₄ vs. D₄ filaments

Filament formation: not necessary to collapse along 2 directions !

A₄ (swallowtail) filaments:

- collapse along 1 direction
- at edges & intersections A₃ sheets

D₄ umbilic filaments

- collapse along 2 directions
- higher density filamentary extensions nodes

Cosmic Web:

(Adhesion) Local Universe

Galaxies up to 50 Mpc ...

2MRS survey sky map: Hidding 2015

Edge-on view Supergalactic Plane:

6 constrained adhesion reconstructions

Face-On Supergalactic Plane

6 constrained adhesion reconstructions

Supergalactic Plane mean field: edge-on

Supergalactic Plane

mean field: edge-on

Local Cosmic Web:

a rough CT-scan

h⁻¹ Mpc

h⁻¹ Mpc

Local Cosmic Web:

the Local Void

Local Void

Virgo

Home

AS840

Local Void

Reconstruction: Hidding, vdW, Kitaura & Hess 2015/2018

Cosmic Web Summary

- Cosmic Web unique probe of structure formation at transition linear to nonlinear stage.
- Structural and Dynamical analysis of the Cosmic Web poses strong challenges due to complex pattern and multiscale nature.
- Nexus/MMF formalism allows study of the evolving multiscale structure of the Cosmic Web.
- Interplay between morphological elements of filaments, walls, cluster nodes and voids.
- Dynamically cluster nodes dominant, structurally (mass, halo content) the filaments.
- Adhesion formalism highly suited for following the dynamical evolution of the weblike structure.
- Adhesion formalism & tessellation-based solution allow investigation of cosmological sensitivity of the cosmic web.

continued: part 2

Flows & Voids