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Notions of information

What is information?

How do we quantify it?

Etymology: (Latin) informare: give form to the mind

Systems theory: information is any type of pattern that

influences the formation of other patterns

J. D. Bekenstein 03: the physical world is made of information

itself

Relation between entropy and information: Maxwell’s demon
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Information and entropy: Maxwell’s demon

Container in thermal equilibrium divided
into 2 parts A and B with a trapdoor

Demon lets faster molecules pass from B
to A

Kinematic energy is reduced in B

Violation of second law of
thermodynamics?

The information on the molecule velocities
increases the overall entropy!

Information and entropy are tightly
related.
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Information and entropy

Boltzmann entropy, density of equal probable microstates
W = N!/ΠiNi !, with N particles in Ni microstate of position
and momentum

S = kB lnW (1)

Gibbs entropy, microstates with different probabilities

S = −kB
∑

i

Pi lnPi (2)
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Shannon’s entropy

Claude Elwood Shannon (April 30, 1916 February 24, 01),
father of information theory, electronic ingeneer worked for
Bell Labs (Shannon 48 A mathematical theory of

communication link )

Shannon’s entropy

H(x) = −
∑

i

P(xi ) logb P(xi) (3)

units of entropy: b=2: bits; b=e: nats; b=10: dits

conditional entropy

H(y|x) =
∑

i ,j

P(xi , yj ) logb
P(yj)

P(xi , yj )
(4)
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Shannon’s entropy

Kullback Leibler distance (or divergence) between two
distributions

DKL(P ||Q) =
∑

i

Pi logb
Pi

Qj
(5)

Mutual information

I (x , y) =
∑

i ,j

P(xi , xj) logb
P(xi , xj)

P(xi )P(yj)
(6)
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Probability theory axioms

Sum rule: OR (Venn diagram)

P(a1 + a2|c) = P(a1|c) + P(a2|c)− P(a1, a2|c) (7)

Product rule: AND

P(a,b|c) = P(a|b, c)P(b|c) (8)

Invariance under permutation of arguments

P(s,d|p) = P(d, s|p) (9)

where s is some signal (or set of model parameters {s1, s2, . . . }), d some

data and p some prior information. Probability distribution functions are

always conditioned on some prior information!, although sometimes we

skip p for simplicity.
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Cramer-Rao inequality/lower bound

unbiased estimator

〈ŝ〉 = s (10)

〈ŝ − s〉 ≡
∫

dd P(d |s)(ŝ − s) = 0, (11)

with P(d |s) being the likelihood of the data given the model
or signal s.
∂/∂s →

∫

dd (ŝ − s)
∂P(d |s)

∂s
−

∫

dd P(d |s) = 0 (12)

∂P(d |s)/∂s = P(d |s)∂lnP(d |s)/∂s →
∫

dd

[

∂lnP(d |s)
∂s

√

P(d |s)
]

[

(ŝ − s)
√

P(d |s)
]

= 1 (13)
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Cramer-Rao inequality/lower bound

Cauchy Schwarz inequality, inner product:

|〈x , y〉|2 ≤ 〈x , x〉〈y , y〉 (14)

→
[

∫

dd P(d |s)
(

∂lnP(d |s)
∂s

)2
]

[
∫

dd P(d |s)(ŝ − s)2
]

≥ 1

(15)
Mean Squared Error (MSE) of the model parameters or signal
as

e2(s) ≡ (∆s)2 ≡ 〈(ŝ − s)2〉 =
∫

dd P(d |s)(ŝ − s)2 (16)

Fisher information

F(s) ≡
∫

dd P(d |s)
(

∂lnP(d |s)
∂s

)2

≡ 〈
(

∂lnP(d |s)
∂s

)2

〉
(17)Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Cramer-Rao inequality/lower bound

∆s ≥
√
F−1 (18)

If e2F = 1 → Minimum Variance Unbiased (MVU) estimator

In general there is a statistical bias B(ŝ) ≡ 〈ŝ〉 − s

MSE(ŝ) = VAR(ŝ) + B2(ŝ) (19)

VAR(ŝ) ≡ σ2(s) ≡ 〈(ŝ − 〈ŝ〉)2〉 (20)
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Fisher information

Score

S ≡ ∂

∂s
lnP(d |s) = 1

P(d |s)
∂P(d |s)

∂s
(21)

Fisher information: variance of the score

F(s) ≡ 〈
(

∂lnP(d |s)
∂s

)2

〉 (22)

if the regularity condition is fulfilled
∫

dd
∂2P(d |s)

∂s2
= 0 (23)

we have

F(s) = −〈∂
2lnP(d |s)

∂s2
〉 (24)
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Fisher information

proof:

F(s) = −〈∂
2lnP(d |s)

∂s2
〉 (25)

= −
∫

dd P(d |s)
[

∂

∂s

(

1

P(d |s)
∂P(d |s)

∂s

)]

= −
∫

dd P(d |s)
[

− 1

P(d |s)2
(

∂P(d |s)
∂s

)2

+
1

P(d |s)
∂2P(d |s)

∂s2

]

=

∫

dd P(d |s) 1

P(d |s)2
(

∂P(d |s)
∂s

)2

−
∫

dd
∂2P(d |s)

∂s2

(26)
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Fisher information

Generalization to Fisher matrix

F(s)ij = −〈 ∂2

∂si∂sj
lnP(d |s)〉 (27)

Information may be seen to be a measure of the
sharpness/curvature of the support curve (lnP(d |s)) near the
Maximum Likelihood estimate of s.

the Cramer-Rao inequality: ∆s i ≥
√

F−1
ii .

examples: a) Gaussian likelihood − lnP(d |s) ≃ − lnP(s0|s) =
1/2(s − s0)

2/σ2→F = 1/σ2→∆s = σ based on some fiducial
model s0. b) Forecast for redshift surveys (White et al 08):

link . c) You can also use e.g. icosmo: link . d) See also
notes from a Winter School in the Canary islands from Licia
Verde link . See Yun Wang’s talk!
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Bayesian inference

Bayesian inference is based on (Thomas) Bayes theorem and in
particular Bayesian probability theory (further developed by
Pierre-Simon Laplace). We focus on the objectivists view, in which
probability is a reasonable expectation that represents the state of
knowledge. It relies on the (Richard T.) Cox theorem (how to
construct a probability theory from a set of logical postulates).
The Bayesian view is a different description than the frequentist
view, which relies on the frequency of a phenomenon (how
frequently something happens in an infinite number of trials). In
the Bayesian framework we work with degrees of belief or
credences. It is a quantitative approach to the abductive inference
vs the deductive or inductive approaches.
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Bayes theorem: the posterior/inference

We use the product and the invariance rules

P(s,d|p) = P(s|d,p)P(d|p) (28)

P(d, s|p) = P(d|s,p)P(s|p), (29)

and get

P(s|d,p) =
P(s|p)P(d|s,p)

P(d|p) (30)

posterior = prior× likelihood/evidence

Prior: P(s|p)
Likelihood: L(s|d,p) = P(d|s,p)
Bayesian notion of information: information is encoded in conditional
probability distribution functions.

Machine learning: update of prior with posterior

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Evidence

normalization of the posterior

marginalization over the signal

P(d|p) =
∫

dsP(d, s|p) =
∫

dsP(s|p)P(d|s,p) (31)

Bayesian model comparison, Bayes factor for models M1 and
M2 with model parameters s1 and s2

K =
P(d |M1) =

∫

ds1 P(d , s1|M1) =
∫

ds1 P(s1|M1)P(d |s1,M1)

P(d |M2) =
∫

ds2 P(d , s2|M2) =
∫

ds2 P(s2|M2)P(d |s2,M2)
(32)

One can use Jeffreys criteria. K > 0 supports M1, K < 0
supports M2 (see e.g. Kass and Raftery 94 link ).

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Example: Dynamical Dark Energy, Zhao et al 17. Nat.Astr.

There is tension within Λ-CDM framework: in

matter density fraction ΩM from Ly-α, and in

the Hubble constant H0 from SN, both as

compared to CMB. This can be alleviated with

a dynamical dark energy: link (see also

Bernal et al 16 link ; and Miguel

Zumalacárregui’s talk with Galileon gravity

models link ).

While the surprise (difference between the expected and actual Kullback-Leibler

distances) favours dynamical dark energy with 3.5 σ significance, Bayesian

evidence is insufficient to favour it over Λ-CDM.

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Bayesian inference steps

Definition of the prior: knowledge of the underlying signal

Definition of the likelihood: nature of the observed data

Linking the prior to the likelihood: link signal to the data

Bayes theorem: the posterior

and then

Evidence computation: e.g. nested sampling

Maximization of the posterior: Maximum a posteriori: MAP

Sampling the posterior: MCMC, importance sampling,
Metropolis-Hasting, Hamiltonian Monte Carlo, Gibbs-sampling,
population Monte Carlo, etc.

See Edwin Thompson Jaynes link based on statistical mechanics methods by

J. Willard Gibbs, and for modern MCMC reviews Neal 93 link , 12 link .
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Data model: signal degradation model

Let us start with simple data models.

Nonlinear data model: data d m-vector, signal s n-vector,
n ≫ m

d = R(s) + ǫ (33)

Linear data model

d = Rs+ ǫ (34)

di =
∑

j

Rijsj + ni (35)

R response operator (m × n matrix) may include: mask,
selection fnct, foregrounds, blurring fnct, PSF, pixel window ...

ǫ noise: random component, white noise, colored noise,
attention: mask, selection fct, pixel window etc.

Francisco-Shu Kitaura Statistical Analysis in Cosmology



Outline
Introduction to information

Bayesian inference steps
Bayesian modelling

Bayesian inference: posterior sampling
Data modelling

Basic data model: link between prior and likelihood
Informative priors
Non-informative priors

Informative priors

Gaussian prior (Wiener 49, Rybicki & Press 92, Zaroubi et al
95) → Thikonov regularization

Lognormal prior/nonlinear transformation (Tarantola &
Valette 82, FSK et al 10)

Expanded Gaussian prior (Juszkiewiz et al 95; Bernardeau &
Kofman 95; Colombi 94, FSK 10)
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Gaussian prior+Gaussian likelihood

Gaussian prior

P(s|p) ∝ exp

(

−
1

2
s
+
S
−1

s

)

(36)

with the covariance matrix of the signal s (e.g. the power-spectrum in
Fourier space of the overdensity field) S = 〈ss+〉(s|p).

Gaussian likelihood

P(d|s, p) ∝ exp

(

−
1

2
(d− Rs)+N−1(d− Rs)

)

(37)

with the noise covariance matrix (e.g. the variance of the Poisson
likelihood) N ≡ 〈ǫǫ+〉(ǫ|p)

Wiener-filter (Wiener 49, Rybicki & Press 92, Zaroubi et al 95, →
Thikonov regularization, see also FSK& Ensslin 08 link ) F: ŝ = Fd with
2 equivalent formulations (exercise: demonstrate it) see Jenny Sorce talk!
F = (S−1 + R+N−1R)−1R+N−1 = SR+(RSR+ +N)−1

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Non-informative priors

Flat prior

Jeffrey’s prior (see e.g. prior for the power-spectrum FSK &
Ensslin 08)

Entropic prior (Jaynes 63, see also Narayan & Nityananda 86,
Skilling 89, FSK & Ensslin 08)
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Flat prior+Gaussian likelihood

improper prior: integral diverges to infinity

maximization leads to maximum likelihood ML

COBE-filter or CMB map making algorithm:
F = (R+N−1R)−1R+N−1

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Flat prior+Poissonian likelihood

Poissonian likelihood

P(N|λ,p) = Πi exp(−λi )
λNi

i

Ni

(38)

Richardson-Lucy deconvolution algorithm (Richardson 72,
Lucy 74, Shepp & Vardi 82)
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Lognormal prior

See Coles and Jones 91 and FSK & Angulo 12.
Let us consider only dark matter and assume the single stream limit. The first
moment of the Vlasov equation describing the phase-space dynamics yields the
continuity equation:

∂ρ

∂τ
+∇r(ρv) = 0, (39)

which can be expanded

∂ρ

∂τ
+ (v · ∇r)ρ+ ρ∇r · v = 0, (40)

We can write this equation in Lagrangian coordinates introducing the total
derivative

1

ρ

dρ

dτ
+∇r · v = 0. (41)

As long as we can follow particles (no shell-crossings) we can also write the

continuity equation as ln(1 + δ) = −
∫

dτ∇r · v. see Bridget Falk’s, Rien van

de Weygaert, and Raul Angulo’s talk!
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Lognormal prior

Linear expansion in the velocity yields a linear overdensity field term and higher
order contributions can be summarised by δ+:

ln(1 + δ) = δL + δ
+
, (42)

Taking the ensemble average of the previous equation we find that µ ≡ 〈δ+〉,
since 〈δL〉 and thus

δL = ln(1 + δ)− µ, (43)

For that reason we can assume a Gaussian distribution for δL in a certain range
of scales

P(δM|S) =
1

√

(2π)Ncellsdet(S)

∏

k

1

1 + δMk

(44)

×exp

(

−
1

2

∑

ij

(ln(1 + δMi )− µi )S
−1
ij (ln(1 + δMj )− µj )

)

,

Lognormal prior/nonlinear transformation (Tarantola & Valette 82, FSK et al

10; Jasche, FSK et al 10)
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Maximum a posteriori

Let us define the energy E (s)

E (s) ≡ − ln (P (s|d,S)) , (45)

MAP

∂E (s)

∂sl
= 0, (46)

Krylov conjugate gradient schemes (FSK & Ensslin 08; FSK, Jasche, &
Metcalf 09, for Wiener Filter also SVD, Cholesky-D, or messenger
approach Elsner & Wandelt 13; Jasche & Lavaux 15)

s
j+1
i = s

j
i −

∑

k

Tik
∂E (s)

∂sk
, (47)
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Markov Chains

Andrey Markov (June 14, 1856 N.S. July 20, 1922) was a
Russian mathematician

Famous papers:

A.A. Markov. ”Extension of the limit theorems of probability
theory to a sum of variables connected in a chain”. reprinted
in Appendix B of: R. Howard. Dynamic Probabilistic Systems,
volume 1: Markov Chains. John Wiley and Sons, 1971.
(original in Russian 1906)
applied to language and vowels: link

Gibbs-sampling, Metropolis-Hastings, Hybrid MCMC,
Hamiltonian MCMC, etc

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Gaussian distributions: Gibbs sampling

The Gibbs algorithm (Geman & Geman 84) samples from the joint PDF by
repeatedly replacing each component with a value drawn from its distribution
conditional on the current values of all other components. The Gibbs sampler
starts with some initial values θ(0) = (θ

(0)
1 , ..., θ

(0)
n ) and obtains new updates

θ
(j) = (θ

(j)
1 , ..., θ

(j)
n ) from the previous step θ

(j−1) through successive generation
of values

θ
(j)
1 ∼ P(θ1 | {θ

(j−1)
i : i 6= 1})

θ
(j)
2 ∼ P(θ2 | θ

(j)
1 , {θ

(j−1)
i : i > 2})

. . .

θ
(j)
n ∼ P(θn | {θ

(j)
i : i 6= n}) (48)

In this way a random walk on the vector θ is performed by making subsequent

steps in low-dimensional subspaces, which span the full product space. This is

similar to individual collisions of particles in a mechanical system that drives a

many-body system to an equilibrium distribution for all degrees of freedom.

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Gaussian distributions: Gibbs sampling

Example Power spectrum and map sampling (Jewell et al 04;
Wandelt et al 04, Eriksen et al 07, FSK & Ensslin 08; Jasche,
FSK, Wandelt & Ensslin 10 link ; Granett et al 15; Jasche &
Lavaux 17)

sj+1 ∼ P(s|Sj ,d) (49)

Sj+1 ∼ P(S|sj+1) (50)

Wiener filter
sj = ŝj + yj (51)

yj = ((Sj)−1 + R+N−1R)−1((Sj)−1/2x1 + R+N−1/2x2) with
Gaussian random variates x1 and x2

Another example is with the peculiar velocity field (see FSK &
Ensslin 08; FSK, Ata, Angulo et al 16; and Ata, FSK et al 17).

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Gaussian distributions: Gibbs sampling

Eriksen et al 07
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Sampling the posterior

Hamiltonian sampling (Duane et al 87; Taylor et al 08, Jasche & FSK 10 link )

H(s, p) = K(p) + E(s), (52)

kinetic term with a given mass as the variance for the momenta

K(p) =
1

2
p
+
M

−1
p, (53)

Marginalization over the momenta

P(s, p) =
e−H

ZH

=
e−K

ZK

e−E

ZE

= P(p)P(s), (54)

Please note, that the kinetic PDF is a Gaussian

Marginalization occurs by drawing momenta from a Gaussian and throwing them away
after each step

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Sampling the posterior

Hamiltonian evolution equations: (s,p) → (s′,p′)

dp

dt
= −∂H

∂s
= −∂E

∂s
, (55)

ds

dt
=

∂H

∂p
= M−1p, (56)

Metropolis-Hastings acceptance step

pa = min(1, e−δH ), (57)

δH = H(s′,p′)− H(s,p) → we do not care about the evidence!

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Expansions of the Bayesian models

Expand the prior
When structures start to virialize the peculiar velocity field changes and
shell crossing becomes important. One can relax the Gaussian
assumption: Colombi 94: skewed lognormal model with the 1D
Edgeworth exansion (based on the skewed Gaussian Edgeworth expansion:
Juszkiewicz, Bouchet & Colombi 95; Bernardeau & Kofman 95; and the
multivariate case: FSK 10 link ). It is complicated and you need models
for the higher order correlation functions.
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Expansions of the Bayesian models

Expand the likelihood.
This requires that the Gaussian assumption applies for the density field at
early cosmic times. This leads to forward Bayesian methods. Jasche et al
13, 15; FSK 12, 13; Wang et al 13, 14; . . . . One way is to explictely
write the connection between the initial Gaussian density field and the
final one with some kind of gravity model (2LPT: Jasche& Wandelt; LPT
with corrections and PM: Wang et al 13,14).
The other strategy is to introduce a new variable, the distribution of dark
matter tracers at initial cosmic times and iteratively solve within a
Gibbs-sampling procedure for the Gaussian initial field and the initial
tracers which are compatible with the final ones given a structure
formation model. Pioneering techniques to obtain a Gaussian field from a
set of constraints: Bertschinger 87; Hoffman & Ribak 91; van de
Weygaert & Bertschinger 96.
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Sampling the initial conditions

Example of forward models on mock galaxy catalogs (FSK 13) link
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Sampling the initial conditions

Example of forward models on data (FSK 12

link ; Hess, FSK et al 13 link ). Bottom left:

redshift-space; middle: cosmic flows right: real-space

(Abel, Kaehler, Hess, FSK phase space mapping 15

NatGeo). Is all this useful? Dipole FSK et al 12; Very

right plot: are we living in a special place? Nuza, FSK

et al 14 link . Reduce H0 tensions Hess & FSK 16

link .
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Data modelling

Effective galaxy bias is complex and has different components

deterministic,

nonlinear,
nonlocal,
threshold bias: peak-background split (loss of information)

stochastic (non-Poisson, shot noise).

Implementing part of this within a Bayesian framework: Ata, FSK & Mueller 15

link
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General bias modelling references

See some works below. Basics on bias, linear, nonlinear, peak-background split: Press Schechter 74; Peebles 80,
93; Kaiser 84; Peacock & heavens 85; Bardeen, Bond, Kaiser & Szalay 86; Cen & Ostriker 93; Fry & Gaztanaga
93; Lacey & Cole 93; Mo & White 96, 02; Sheth & Tormen 99; And list of works (not complete): Stochastic bias:
Dekel & Lahav 99; Sheth & Lemson 99; Somerville et al 01. Semi-analytic models: Cole 00; Haton 03; Somerville
& Primack 99; Cole et al. 00; Somerville et al 01b; Croton et al. 06; De Lucia & Blaizot 06; Cattaneo et al. 07;
Somerville et al. 08; Bower 06; Baugh 06; Monaco 07; Guo et al 10, 16. White & Frenk 91; Kauffmann et al. 93;
Cole et al. 94. Halo model: Seljak 00; Cooray & Sheth; Halo occupation distribution: Berlinde & Weinberg 02;
Zhehavi et al 11; Abundance matching: Klypin et al 99; Kravtsov et al 04; Vale & Ostriker 04,06,08; Nagai &
Kravtsov 05; Conroy & Wechsler 06; Behroozi 10; Trujillo-Gomez et al 11; Nuza et al 12; Rodriguez et al 16;
Perturbative expansions: McDonald & Roy 09; Baldauf et al 12, ..., 16; Hearin et al 13; Saito et al 14, 15;
Desjacques et al 16.

Some primers and reviews (not complete list): on nonlinear and nonlocal expansions of bias with perturbation

theory Desjacques et al 16 link , on semi-analytic models Baugh 06 link , on the halo model Cooray &

Sheth link , on the Halo occupation distribution (HOD), e.g. Zheng et al 05 link , on abundance matching

Klypin et al 14 link .
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Modelling effective bias

What do we need to populate halos on a large scale dark matter field?
nonlinear, stochastic and peak-background split (de La Torre & Peacock
12; FSK et al 14; Angulo et al 14; Neyrinck et al 14; Ahn et al 15;
Chuang, FSK et al 15). How where the BOSS mocks constructed? FSK
et al 16 link

What information do we need to assign masses to a distribution of halos?

Mi x P(Mi |r , ρM,T ,∆r , {pc}, z) (58)

Zhao, FSK, Chuang et al 15
link We have to check up to

3-point statistics (and 4-point).
We need nonlinear and
nonlocal contributions! This is
only partially solved for massive
objects!
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Determining effective bias parameters with MCMC

Vakili, FSK, Feng et al 17 link using PM and emcee link (very different results for different populations!)

λh ≡ ρh ≡ 〈Nh〉dV = fh B(ρh|ρm) , (59)

fh =
ρh

〈B(ρh|ρm)〉V
, (60)

B(ρh|ρm) = ρ
α
m

︸︷︷︸

nonlinear bias

× θ
(
ρm − ρth

)

︸ ︷︷ ︸

threshold bias

× exp
(
− (ρm/ρǫ)

ǫ)

︸ ︷︷ ︸

exponential cutoff

,(61)

P(Nh|λh, β) =
λ
Nh
h

Nh!
e
−λh

︸ ︷︷ ︸

Poisson distribution

×
Γ(β + Nh)

Γ(β)(β + λh)
Nh

×
eλh

(1 + λh/β)β
︸ ︷︷ ︸

Deviation from Poissonity

.(62)

we need also the PDF to fit the 3-point statistics (FSK, Gil-Mar’in
et al 15)

−2 ln p(ref|θ) =
∑

k

[
(
Pref (k) − Pmock(k)

)2

σ2
k

+ ln(2πσ
2
k )

]

+
∑

n

[
(
ρref (n) − ρmock(n)

)2

σ2
n

+ ln(2πσ
2
n)
]

(63)
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Determining effective bias parameters with MCMC

Vakili, FSK, Feng et al 17 link using PM and emcee link (percentage accuracy up to k ∼ 0.4!)
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Conclusions

Statistical methods in cosmology can be very powerful.

Active field with exciting developments.

We need to improve the connection between the likelihoods and the
priors, or equivalently between the data and the models. This is still very
challenging!
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Appendix

Cosmic voids are dangerous (see Andreu Font’s talk) Chuang, FSK
(Font-Ribera) et al 17 link

but useful, we showed that we can get the BAO from voids! FSK, Chuang
et al 16 link ; Yu et al 16 link ; Zhao et al 16 link (including always
Charling Tao)
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