HECTOR GIL-MARIN (ILP-LPNHE)

COSMOLOGY WITH GALAXY SURVEYS

Fuerteventura Cosmologiy School

REDSHIFT SPACE DISTORTIONS
BARYON ACOUSTIC OSCILLATIONS
HIGHER ORDER STATISTICS

COSMOLOGY WITH GALAXY SURVEYS

Outline

- $\mathbf{P}(\mathrm{k})$ Estimator $\&$ Selection Function
- RSD \& BAO in actual surveys
- Bispectrum signal

Introduction

Dark matter over-density, $\quad \delta(r) \equiv \frac{\rho(r)}{\bar{\rho}}-1 \quad \delta(k)=\int \delta(x) e^{i k x} d x$

2-point correlation function (2pCF), $\langle\delta(r) \delta(r+R)\rangle=\xi(R)$

Power Spectrum (PS) $\left\langle\delta(k) \delta^{*}\left(k^{\prime}\right)\right\rangle=(2 \pi)^{3} P(k) \delta^{D}\left(k+k^{\prime}\right)$

The PS and 2-pCF are the observables for RSD and BSO

Power Spectrum

Key ingredients for cooking a for $/$ BAO measurement

1. Measure $P^{(0)}(k), P^{(2)}(k)$ from data
2. Survey selection function
3. Model dark matter power spectra
4. Galaxy bias model
5. Covariance (error)

Mix it with a MCMC sampler and serve it cold!

Power Spectrum

Key ingredients for cooking a for / BAO measurement
Measure $\mathrm{P}^{(0)}(\mathrm{k}), \mathrm{P}^{(2)}(\mathrm{k})$ from data
2. Survey selection function
3. Miode!dark matter power spectra
4. Galaxy bias model \leftarrow W. Percival
5. Covariance (error) - A. Cuesta

Mix it with a MCMC sampler and serve it cold!

Measuring $P(k)$ from surveys

Real life problems

- Non-uniform distribution of galaxies
- Varying photometric conditions
- Fibre limitations

Measuring $P(k)$ from surveys

Real life problems

- Non-uniform distribution of galaxies
- Varying photometric conditions
- Fibre limitations

Measuring $\mathbf{P}(\mathrm{k})$ from surveys

Real life problems

- Non-uniform distribution of galaxies
- Varying photometric conditions
- Fibre limitations

FKP function (Feldman et al. 1994)

$$
F_{2}(\vec{r})=\frac{w(\vec{r})}{\sqrt{I_{2}}}\left[n(\vec{r})-\alpha n_{s}(\vec{r})\right]
$$

Yamamoto et al. 2006

$$
\begin{gathered}
\tilde{P}_{g}^{(\ell)}(k)=(2 \ell+1) \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)} \wp_{\ell}\left(\hat{k} \cdot \hat{r}_{h}\right)-P_{\ell}^{n o i s e}(k)\right] \\
\text { line of sight dependence }
\end{gathered}
$$

$$
\tilde{P}_{g}^{(\ell)}(k)=(2 \ell+1) \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k}\left(\vec{r}_{1}-\vec{r}_{2}\right)} \wp_{\ell}\left(\hat{k} \cdot \hat{r}_{h}\right)-P_{\ell}^{n o i s e}(k)\right]
$$

Legendre Polynomials

For the monopole no-LOS dependence,

$$
\vec{r}_{h}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}
$$

Line of sight dependence through

$$
\begin{array}{ll}
\wp_{0}(x)=1 & \text { Monopole } \\
\wp_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) & \text { Quadrupole }
\end{array}
$$

$$
\tilde{P}_{g}^{(0)}(k)=\int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)}-P_{0}^{n o i s e}(k)\right]
$$

$$
\tilde{P}_{g}^{(\ell)}(k)=(2 \ell+1) \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k}\left(\vec{r}_{1}-\vec{r}_{2}\right)} \wp_{\ell}\left(\hat{k} \cdot \hat{r}_{h}\right)-P_{\ell}^{n o i s e}(k)\right]
$$

Legendre Polynomials

For the monopole no-LOS dependence,

$$
\vec{r}_{h}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}
$$

$\wp_{0}(x)=1 \quad$ Monopole
$\wp_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \quad$ Quadrupole

$$
\tilde{P}_{g}^{(0)}(k)=\int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} F_{2}\left(\vec{r}_{1}\right) e^{i k v_{1}} \int d^{3} r_{2} F_{2}\left(\vec{r}_{2}\right) e^{-i k v_{2}}-P_{0}^{\text {noise }}(k)\right]
$$

FT
FT

$$
\tilde{P}_{g}^{(\ell)}(k)=(2 \ell+1) \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)} \wp_{\ell}\left(\hat{k} \cdot \hat{r}_{h}\right)-P_{\ell}^{n o i s e}(k)\right]
$$

Legendre Polynomials

For the monopole no-LOS dependence

$$
\vec{r}_{h}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}
$$

$\wp_{0}(x)=1$	Monopole
$\wp_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$	Quadrupole

$$
\tilde{P}_{g}^{(0)}(k)=\int \frac{d \Omega_{k}}{4 \pi}\left[F_{2}(\vec{k}) F_{2}^{*}(\vec{k})-P_{0}^{\text {noise }}(k)\right]
$$

$$
\tilde{P}_{g}^{(\ell)}(k)=(2 \ell+1) \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)} \wp_{\ell}\left(\hat{k} \cdot \hat{r}_{h}\right)-P_{\ell}^{n o i s e}(k)\right]
$$

Legendre Polynomials

For the quadrupole,

$$
\tilde{P}_{g}^{(2)}(k)=5 \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i k\left(r_{1}-r_{2}\right)} \wp_{2}\left(\hat{k} \cdot \hat{r}_{h}\right)-P_{\ell}^{\text {noise }}(k)\right]
$$

Integrals are not separable

$$
\tilde{P}_{g}^{(\ell)}(k)=(2 \ell+1) \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k}\left(\vec{r}_{1}-\vec{r}_{2}\right)} \wp_{\ell}\left(\hat{k} \cdot \hat{r}_{h}\right)-P_{\ell}^{n o i s e}(k)\right]
$$

Legendre Polynomials Line of sight dependence through
$\begin{array}{ll}\wp_{0}(x)=1 & \text { Monopole } \\ \wp_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) & \text { Quadrupole }\end{array}$

For the quadrupole,

$$
\vec{r}_{h}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}
$$

$$
\tilde{P}_{g}^{(2)}(k)=5 \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)} \wp_{2}\left(\hat{k} \cdot \hat{r}_{1}\right)-P_{\ell}^{\text {noise }}(k)\right]
$$

$$
\tilde{P}_{g}^{(\ell)}(k)=(2 \ell+1) \int \frac{d \Omega_{k}}{4 \pi}\left[\int d^{3} r_{1} \int d^{3} r_{2} F_{2}\left(\vec{r}_{1}\right) F_{2}\left(\vec{r}_{2}\right) e^{i \vec{k}\left(\vec{r}_{1}-\vec{r}_{2}\right)} \wp_{\ell}\left(\hat{k} \cdot \hat{r}_{h}\right)-P_{\ell}^{n o i s e}(k)\right]
$$

Legendre Polynomials Line of sight dependence through
$\begin{array}{ll}\wp_{0}(x)=1 & \text { Monopole } \\ \wp_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) & \text { Quadrupole }\end{array}$

For the quadrupole,

$$
\vec{r}_{h}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}
$$

Survey selection function

Issue: Estimators previously presented, $\tilde{P}_{g}^{(\ell)}(k)$ do not measure the actual underling power spectrum multipoles.

Reason: Non-uniform distribution of galaxies get imprinted inevitably in $F(k)$ after the FT!

Consequence: The estimators $\tilde{P}_{g}^{(\ell)}(k)$ measure a convolution between the actual underling power spectrum multipoles and the survey geometry function

Survey selection function

Generalization to higher order multipoles: Wilson et al. 2016 Hankel Transforms: $\quad \hat{P}^{(\ell)}(k)=4 \pi(-i)^{\ell} \int r^{2} \hat{\xi}^{(\ell)}(r) j_{\ell}(k r) d r$ spherical Bessel functions

COSMOLOGY WITH GALAXY SURVEYS

Survey selection function

Generalization to higher order multipoles: Wilson et al. 2016 Hankel Transforms: $\quad \hat{P}^{(\ell)}(k)=4 \pi(-i)^{\ell} \int r^{2} \hat{\xi}^{(\ell)}(r) j_{\ell}(k r) d r$
spherical Bessel functions

Masked monopole and quadrupole

$$
\begin{aligned}
& \hat{\xi}^{(0)}(r)=\xi^{(0)}(r) W_{0}^{2}(r)+\frac{1}{5} \xi^{(2)}(r) W_{2}^{2}(r)+\frac{1}{9} \xi^{(4)}(r) W_{4}^{2}(r)+\ldots \\
& \hat{\xi}^{(2)}(r)=\xi^{(0)}(r) W_{2}^{2}(r)+\xi^{(2)}(r)\left[W_{0}^{2}(r)+\frac{2}{7} W_{2}^{2}(r)+\frac{2}{7} W_{4}^{2}(r)\right]+\ldots
\end{aligned}
$$

Survey selection function

Generalization to higher order multipoles: Wilson et al. 2016 Hankel Transforms: $\quad \hat{P}^{(\ell)}(k)=4 \pi(-i)^{\ell} \int r^{2} \hat{\xi}^{(t)}(r) j_{\ell}(k r) d r$

COSMOLOGY WITH GALAXY SURVEYS
Survey selection function
Generalization to higher order multipoles: Wilson et al. 2016

11P LPNHE COSMOLOGY WITH GALAXY SURVEYS

Survey selection function

Generalization to higher order multipoles: Wilson et al. 2016

Survey selection function

Importance of the window function for BAO

Survey selection function

Importance of the window function for BAO

Survey selection function

Importance of the window function for BAO

Survey selection function

Importance of the window function for RSD

$$
P_{g}(k, \mu ; z)=\left[b_{1}(z)+f(z) \mu^{2}\right]^{2} P_{l i n}\left(k, z_{0}\right)\left[\sigma_{8}^{2}(z) / \sigma_{8}^{2}\left(z_{0}\right)\right]+\ldots
$$

$$
P_{g}^{(0)}(k ; z)=\frac{P_{l i n}\left(k ; z_{0}\right)}{\sigma_{8}^{2}\left(z_{0}\right)} \sigma_{8}^{2}(z)\left[b_{1}(z)^{2}+\frac{2}{3} f(z) b_{1}(z)+\frac{1}{5} f^{2}(z)\right]+\ldots
$$

$$
P_{g}^{(2)}(k ; z)=\frac{P_{l i n}\left(k ; z_{0}\right)}{\sigma_{8}^{2}\left(z_{0}\right)} \sigma_{8}^{2}(z)\left[\frac{4}{3} f(z) b_{1}(z)+\frac{4}{7} f(z)^{2}\right]+\ldots
$$

2 Eq. \& 2 free param.

$$
b_{1}(z) \sigma_{8}(z) \quad f(z) \sigma_{8}(z)
$$

Survey selection function

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum

- Quantity which is essentially non-linear

If all the $\boldsymbol{\delta}(\mathbf{k})$ modes evolve linearly (and the initial conditions are Gaussian) the bispectrum is 0 and all the information on the system of objects/galaxies is described by the power spectrum.
Probability of finding 3 galaxies separated by r, s and $t: P_{3}(r, s, t)=$
$\left[1+\xi_{2}(r)+\xi_{2}(s)+\xi_{2}(t)+\zeta(r, s, t)\right] d V_{1} d V_{2} d V_{3}$ The bispectrum is defined as the FT of ζ,

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \equiv \int d \mathbf{r} d \mathbf{s} \zeta(\mathbf{r}, \mathbf{s}) e^{-i \mathbf{r} \cdot \mathbf{k}_{1}} e^{-i \mathbf{s} \cdot \mathbf{k}_{2}}
$$

$$
\text { Since, } \zeta(r, s, t) \equiv\langle\delta(\mathbf{x}+\mathbf{r}) \delta(\mathbf{x}+\mathbf{t}) \delta(\mathbf{x})\rangle_{\mathbf{x}}
$$

$$
B\left(k_{1}, k_{2}, k_{3}\right)=\left\langle\delta\left(\mathbf{k}_{1}\right) \delta\left(\mathbf{k}_{2}\right) \delta\left(\mathbf{k}_{3}\right)\right\rangle \delta^{D}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right)
$$

Bispectrum

- Quantity which is essentially non-linear If all the $\boldsymbol{\delta}(\mathbf{k})$ modes evolve linearly (and the initial conditions are Gaussian) the bispectrum is 0 and all the information on the system of objects/galaxies is described by the power spectrum.

$$
\begin{array}{cc}
\delta(k)=\delta^{(1)}(k)+\delta^{(2)}(k)+\ldots & \begin{array}{c}
\text { Perturbative expansion } \\
\text { (see. M. Crocce Talk) }
\end{array} \\
\delta^{(n)}(\vec{k})=\int \tilde{F}_{n}\left(\vec{q}_{1}, \ldots, \vec{q}_{n}\right) \delta^{(1)}\left(\vec{q}_{1}\right) \ldots \delta^{(1)}\left(\vec{q}_{n}\right) d^{3} q_{1} \ldots d^{3} q_{n} & \vec{k}=\vec{q}_{1}+\ldots+\vec{q}_{n}
\end{array}
$$

$\tilde{F}_{n}\left(\vec{q}_{1}, \ldots, \vec{q}_{n}\right)$ non-symmetrised kernel of n-order
To be computed from recursive relations

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum

- Quantity which is essentially non-linear

If all the $\boldsymbol{\delta}(\mathbf{k})$ modes evolve linearly (and the initial conditions are Gaussian) the bispectrum is 0 and all the information on the system of objects/galaxies is described by the power spectrum.

$$
\begin{gathered}
\delta(k)=\delta^{(1)}(k)+\delta^{(2)}(k)+\ldots \\
\left\langle\delta(k) \delta\left(k^{\prime}\right)\right\rangle=\left\langle\delta^{(1)}(k) \delta^{(1)}\left(k^{\prime}\right)\right\rangle+2\left\langle\delta^{(1)}(k) \delta^{(2)}\left(k^{\prime}\right)\right\rangle+\left\langle\delta^{(2)}(k) \delta^{(2)}\left(k^{\prime}\right)\right\rangle+2\left\langle\delta^{(1)}(k) \delta^{(3)}\left(k^{\prime}\right)\right\rangle+\ldots
\end{gathered}
$$

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum

- Quantity which is essentially non-linear If all the $\boldsymbol{\delta}(\mathbf{k})$ modes evolve linearly (and the initial conditions are Gaussian) the bispectrum is 0 and all the information on the system of objects/galaxies is described by the power spectrum.

$$
\begin{aligned}
& \delta(k)=\delta^{(1)}(k)+\delta^{(2)}(k)+\ldots \text { Perturbative expansion } \\
& \text { linear term } \\
& \text { prim. nG term } \\
& \text { 1-loop terms } \\
& \begin{array}{ccc}
\left\langle\delta(k)^{2}\right\rangle & \left\langle\delta(k)^{3}\right\rangle & \left\langle\delta(k)^{4}\right\rangle
\end{array}
\end{aligned}
$$

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum

- Quantity which is essentially non-linear

If all the $\boldsymbol{\delta}(\mathbf{k})$ modes evolve linearly (and the initial conditions are Gaussian) the bispectrum is 0 and all the information on the system of objects/galaxies is described by the power spectrum.

$$
\delta(k)=\delta^{(1)}(k)+\delta^{(2)}(k)+\ldots \quad \begin{aligned}
& \text { Perturbative expansion } \\
& \text { (see. M. Crocce Talk) }
\end{aligned}
$$

$\left\langle\delta(k) \delta\left(k^{\prime}\right) \delta\left(k^{\prime \prime}\right)\right\rangle=\left\langle\delta^{(1)}(k) \delta^{(1)}\left(k^{\prime}\right) \delta^{(1)}\left(k^{\prime \prime}\right)\right\rangle+2\left\langle\delta^{(1)}(k) \delta^{(1)}\left(k^{\prime}\right) \delta^{(2)}\left(k^{\prime \prime}\right)\right\rangle+\ldots$

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum

- Quantity which is essentially non-linear

If all the $\delta(\mathbf{k})$ modes evolve linearly (and the initial conditions are Gaussian) the bispectrum is 0 and all the information on the system of objects/galaxies is described by the power spectrum.

$$
\delta(k)=\delta^{(1)}(k)+\delta^{(2)}(k)+\ldots . \quad \begin{array}{r}
\text { Perturbative expansion } \\
\text { (see. M. Crocce Talk) }
\end{array}
$$

$$
\left\langle\delta(k) \delta\left(k^{\prime}\right) \delta\left(k^{\prime \prime}\right)\right\rangle=\left\{\begin{array}{l}
\left\langle\delta^{(1)}(k) \delta^{(1)}\left(k^{\prime}\right) \delta^{(1)}\left(k^{\prime \prime}\right)\right. \\
\text { primordial } n G \text { term }
\end{array}\right.
$$

Bispectrum

Plotting the Power Spectrum $\quad P(k, \mu) \rightarrow P^{(0)}(k), P^{(2)}(k), \ldots$

Bispectrum

Plotting the Bispectrum $\quad B\left(k_{1}, k_{2}, k_{3}\right) \rightarrow B\left(k_{3} ; k_{1}, k_{2}\right)$

BOSS DR11

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum

Plotting the Bispectrum $\quad B\left(k_{1}, k_{2}, k_{3}\right) \rightarrow B\left(k_{3} ; k_{1}, k_{2}\right)$

BOSS DR11

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum
 $$
B\left(k_{1}, k_{2}, k_{3}\right) \rightarrow B^{\text {cqui }}\left(k_{1}\right)
$$

CMASS sample ($z_{\text {eff }}=0.57$)

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum

Without loss of generality $k_{1} \leq k_{2} \leq k_{3} \longrightarrow \quad k_{1}+k_{2} \geq k_{3} \geq k_{2}$

index	k_{1}	k_{2}	k_{3}
1	0.01	0.01	0.01
2	0.01	0.01	0.02
3	0.01	0.02	0.02
4	0.01	0.02	0.03
5	0.01	0.03	0.03
6	0.01	0.03	0.04
\ldots	\ldots	\ldots	\ldots
i	0.02	0.02	0.02
$i+1$	0.02	0.02	0.03
$i+2$	0.02	0.02	0.04
$i+3$	0.02	0.03	0.03
\ldots	\ldots	\ldots	\ldots
n	$k_{\max }$	$k_{\max }$	$k_{\max }$

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum
 $$
B\left(k_{1}, k_{2}, k_{3}\right) \rightarrow B^{\text {cqui }}\left(k_{1}\right)
$$

CMASS sample ($z_{\text {eff }}=0.57$)

$$
B\left(k_{1}, k_{2}, k_{3}\right) \rightarrow B(I)
$$

CMASS sample ($z_{\text {eff }}=0.57$)

CMASS sample ($\mathrm{z}_{\text {eff }}=0.57$)

CMASS sample ($\mathrm{z}_{\text {eff }}=0.57$)

Bispectrum of dark matter

For a Gaussian initial conditions,

$$
\begin{aligned}
& \left\langle\delta(k) \delta\left(k^{\prime}\right) \delta\left(k^{\prime \prime}\right)\right\rangle=2\left\langle\delta^{(1)}(k) \delta^{(1)}\left(k^{\prime}\right) \delta^{(2)}\left(k^{\prime \prime}\right)\right\rangle+\ldots \\
& B^{\text {Iree }}\left(\vec{k}_{1}, \vec{k}_{2}\right)=2 P_{\text {lin }}\left(k_{1}\right) P_{\text {lin }}\left(k_{2}\right) \tilde{F}_{2}^{(s)}\left(\vec{k}_{1}, \vec{k}_{2}\right)+c y c .
\end{aligned}
$$

COSMOLOGY WITH GALAXY SURVEYS

Bispectrum of dark matter

For a Gaussian initial conditions,
$\left\langle\delta(k) \delta\left(k^{\prime}\right) \delta\left(k^{\prime \prime}\right)\right\rangle=2\left\langle\delta^{(1)}(k) \delta^{(1)}\left(k^{\prime}\right) \delta^{(2)}\left(k^{\prime \prime}\right)\right\rangle+\ldots$
$\left.B^{\text {lree }}\left(\vec{k}_{1}, \vec{k}_{2}\right)=2 P_{\text {lin }}\left(k_{1}\right) P_{\text {lin }}\left(k_{2} \tilde{F}_{2}^{(s)}\right) \vec{k}_{1}, \vec{k}_{2}\right)+c y c$.
where...

$$
F_{2}^{(s)}\left(\vec{k}_{i}, \vec{k}_{j}\right)=\frac{5}{7}+\frac{1}{2} \cos \left(\alpha_{i j}\right)\left[\frac{k_{i}}{k_{j}}+\frac{k_{j}}{k_{i}}\right]+\frac{2}{7} \cos ^{2}\left(\alpha_{i j}\right)
$$

Weak dependence on Ω, but sensitive to modifications of GR

Leading order term in bispectrum is sensitive to GR:

Bispectrum of dark matter

For a Gaussian initial conditions, $\left\langle\delta(k) \delta\left(k^{\prime}\right) \delta\left(k^{\prime \prime}\right)\right\rangle=2\left\langle\delta^{(1)}(k) \delta^{(1)}\left(k^{\prime}\right) \delta^{(2)}\left(k^{\prime \prime}\right)\right\rangle+$. $B^{\text {lree }}\left(\vec{k}_{1}, \vec{k}_{2}\right)=2 P_{\text {lin }}\left(k_{1}\right) P_{\text {lin }}\left(k_{2}\left(\vec{F}_{2}^{(s)}\right) \vec{k}_{1}, \vec{k}_{2}\right)+c y c$ where...

$$
F_{2}^{(s)}\left(\vec{k}_{i}, \vec{k}_{j}\right)=\frac{5}{7}+\frac{1}{2} \cos \left(\alpha_{i j}\right)\left[\frac{k_{i}}{k_{j}}\right.
$$

Weak dependence on Ω, but sensitive to moditications of GR

Characteristic U-shape

Leading order term in bispectrum is sensitive to GR:

Bispectrum of dark matter

For a Gaussian initial conditions,
$\left\langle\delta(k) \delta\left(k^{\prime}\right) \delta\left(k^{\prime \prime}\right)\right\rangle=2\left\langle\delta^{(1)}(k) \delta^{(1)}\left(k^{\prime}\right) \delta^{(2)}\left(k^{\prime \prime}\right)\right\rangle+$
$B^{\text {iree }}\left(\vec{k}_{1}, \vec{k}_{2}\right)=2 P_{\text {lin }}\left(k_{1}\right) P_{\text {lin }}\left(k_{2}\left(\tilde{F}_{2}^{(s)}\right) \vec{k}_{1}, \vec{k}_{2}\right)+c y c$ where...

$$
F_{2}^{(s)}\left(\vec{k}_{i}, \vec{k}_{j}\right)=\frac{5}{7}+\frac{1}{2} \cos \left(\alpha _ { i j } \left[\frac{k_{i}}{k_{j}}\right.\right.
$$

Weak dependence on Ω, but sensitive to moditications ot gaR

Bispectrum of galaxies

Bias model (McDonald \& Roy 2009)
Do PT but on $\delta_{g}(\mathbf{k})$

PT expansion

$$
\delta(k)=\delta^{(1)}(k)+\delta^{(2)}(k)+\ldots
$$

$$
B_{g}\left(\vec{k}_{1}, \vec{k}_{2}\right)=b_{1}^{4} \sigma_{8}^{4}\left\{2 P_{l n}\left(k_{1}\right) P_{l n}\left(k_{2}\right)\left[\frac{1}{b_{1}} F_{2}^{(s)}\left(\vec{k}_{1}, \vec{k}_{2}\right)+\frac{b_{2}}{2 \vec{b}_{1}^{2}}+\frac{2}{7 b_{1}^{2}}\left(1-b_{1}\right) S_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right)\right]+c y c .\right\}
$$

Shape dependence sensitive to b_{2} (non-linear term) Shape dependence sensitive to $\mathrm{b}_{\mathbf{s 2}}$ (tidal tensor term)

Bispectrum of galaxies

Bispectrum of galaxies in redshift space

$$
B_{g}\left(\vec{k}_{1}, \vec{k}_{2}\right)=b_{1}^{4} \sigma_{8}^{4}\left\{2 P_{\text {lin }}\left(k_{1}\right) P_{\text {lin }}\left(k_{2}\right)\left[\frac{1}{b_{1}} F_{2}^{(s)}\left(\vec{k}_{1}, \vec{k}_{2}\right)+\frac{b_{2}}{2 b_{1}^{2}}+\frac{2}{7 b_{1}^{2}}\left(1-b_{1}\right) S_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right)\right]+c y c .\right\}
$$

$$
\text { Redshift space Kernels }\left\{\begin{array}{l}
F_{1} \rightarrow Z_{1} \\
F_{2} \rightarrow Z_{2}
\end{array}\right.
$$

$Z_{1}(\vec{k})=\left(b_{1}+f \mu^{2}\right) \quad$ Kaiser like
$Z_{2}\left(\vec{k}_{i}, \vec{k}_{j}\right)=b_{1}\left[F_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right)+\frac{f \mu k}{2}\left(\frac{\mu_{1}}{k_{1}}+\frac{\mu_{2}}{k_{2}}\right)\right]+f \mu\left(G_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right)+\frac{f^{3} \mu k}{2} \mu_{1} \mu_{2}\left(\frac{\mu_{2}}{k_{1}}+\frac{\mu_{1}}{k_{2}}\right)+\frac{b_{2}}{2}+\frac{2}{7}\left(1-b_{1}\right) S_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right)\right.$ velocity kernel

Bispectrum of galaxies in redshift space

$$
B_{g}^{(s)}\left(\vec{k}_{1}, \vec{k}_{2}\right)=\sigma_{8}^{4}\left[2 P_{l i n}\left(k_{1}\right) P_{l i n}\left(k_{2}\right) Z_{1}\left(\vec{k}_{1}\right) Z_{1}\left(\vec{k}_{2}\right) Z_{2}^{(s)}\left(\vec{k}_{1}, \vec{k}_{2}\right)+c y c .\right]
$$

Bispectrum of galaxies in redshift space

60 Nbody DM simulations

Figure 10. Best-fitting parameters for dark matter simulations in redshift space at $z=0.5$ for $k_{\max }=0.15$ when different statistics are used: blue points correspond to $P^{(0)}+B^{(0)}$, green points to $P^{(0)}+P^{(2)}$ and red points to $P^{(0)}+P^{(2)}+B^{(0)}$ as indicated. The dashed black lines mark the true values. The green dashed lines mark the $b_{1} \propto \sigma_{8}^{-1}$ and the $f \propto \sigma_{8}^{-1}$ relations. Note that $b_{1}, b_{2}, f, \sigma_{8}, \sigma_{0}^{P}, \sigma_{0}^{B}$ are varied as free parameters, although only b_{1}, b_{2}, f and σ_{8} are shown for clarity.

Gil-Marín et al. 2014

Bispectrum of galaxies in redshift space

60 Nbody DM simulations

Figure 10. Best-fitting parameters for dark matter simulations in redshift space at $z=0.5$ for $k_{\max }=0.15$ when different statistics are used: blue points correspond to $P^{(0)}+B^{(0)}$, green points to $P^{(0)}+P^{(2)}$ and red points to $P^{(0)}+P^{(2)}+B^{(0)}$ as indicated. The dashed black lines mark the true values. The green dashed lines mark the $b_{1} \propto \sigma_{8}^{-1}$ and the $f \propto \sigma_{8}^{-1}$ relations. Note that $b_{1}, b_{2}, f, \sigma_{8}, \sigma_{0}^{P}, \sigma_{0}^{B}$ are varied as free parameters, although only b_{1}, b_{2}, f and σ_{8} are shown for clarity.

Gil-Marín et al. 2014

Bispectrum of galaxies in redshift space

60 Nbody DM simulations

Remember...

$$
\begin{aligned}
& P_{g}^{(0)}(k)=P_{l i n}(k) \sigma_{8}^{2}\left[b_{1}^{2}+\frac{2}{3} f b_{1}+\frac{1}{5} f^{2}\right]+\ldots \quad \begin{array}{l}
\text { r dark matter simulations in redshift space at } z=0.5 \text { for } k_{\max }=0.15 \\
\text { points correspond to } P^{(0)}+B^{(0)}, \text { green points to } P^{(0)}+P^{(2)} \text { and red } \\
\text { l. The dashed black lines mark the true values. The green dashed lines } \\
\text { lations. Note that } b_{1}, b_{2}, f, \sigma_{8}, \sigma_{0}^{P}, \sigma_{0}^{B} \text { are varied as free parameters, } \\
v n \text { for clarity. }
\end{array} \\
& P_{g}^{(2)}(k)=P_{l i n}(k) \sigma_{8}^{2}\left[\frac{4}{3} f b_{1}+\frac{4}{7} f^{2}\right]+\ldots
\end{aligned}
$$

Bispectrum of galaxies in redshift space

Efficiency of $f \sigma_{8}$ and $b_{1} \sigma_{8}$ breaking degeneracy

1.1
true
pace at $z=0.5$ for $k_{\text {max }}=0.15$ n points to $P^{(0)}+P^{(2)}$ and red values. The green dashed lines are varied as free parameters,

Gil-Marín et al. 2014

Bispectrum and BAO

- Bispectrum as an alternative to reconstruction techniques.
- After reconstruction the bispectrum signal is significantly reduced to 0
- Reconstruction is pulling information from B back into P
- By measuring P and B in the pre-reconstructed field we can recover post-reconstruction

(see W. Percival talk) BAO information without assuming GR nor $\mathbf{\Omega}_{\mathbf{m}}$

Bispectrum of galaxies in redshift space

Conclusions

- Bispectrum is a non-linear quantity (even at first order)
- Leading order term in bispectrum is sensitive to GR
- Shape dependence sensitive to \mathbf{b}_{2} (non-linear term) and $\mathrm{b}_{\mathrm{s} 2}$ (tidal tensor term)
- f and σ_{8} can be measured independently

