

Angular Correlation Function in the Dark Energy Survey

Institute for Space Science, Barcelona

Cosmology School in Canary Islands, Fuerteventura 18/09/2017

Outline

Measuring angular correlation functions in an imaging survey : how do we treat and mitigate systematics.

Dark Energ overview

- Wide Optical and near IR survey (grizY bands)
- 525 nights over 5 seasons in 5 imaging bands
- 300 M galaxies over 5000 deg² (2500 deg² overlap with South Pole Telescope)
- i-band magnitud limit ~24 at S/N=10, largest survey at this sensitivity
- 30 deg² in time domain, SN fields visited at least once per week (3000 SNIa)

Just finished 4th year of observations.

Dark Energy Survey

Weak lensing (distance, structure growth) shapes of 200 millions galaxies

Baryonic acoustic oscillations (distance) 300 millions galaxies to z=1 and beyond

Galaxy clusters (distance, structure growth) hundred of thousands of clusters up to z~1 synergies with SPT, VHS

Type la supernovae (distance) 30 sq. deg. SN fields 3000 SNIa to z~1

Strong Lensing (distance) 30 QSO lens time delays Arcs with multiple source redshifts

Cross-correlations

Galaxies and WL x CMB lensing

robust combination of probes

- → shared photometry/footprint
- \rightarrow shared analysis of systematics
- \rightarrow shared galaxy redshift estimates

DE equation of state $w \equiv p/\rho$ w(a) = w₀+(1-a)w_a

DES Science Verification Galaxy Distribution

2.3 million galaxies used in LSS (i < 22.5) in 0.2 < z < 1.2

DES Year 1 Galaxy Distribution

Clustering of red magic galaxies for Weak Lensing combination

Elvin-Pole J., Crocce M., Ross A. et al arxiv 1708.01536

Clustering of red magic galaxies for Weak Lensing combination

Elvin-Pole J., Crocce M., Ross A. et al arxiv 1708.01536

LSS
$$\delta_{gal} \sim b \times \delta_m$$
 WL $\delta_{gal shapes} \sim$

$$w_{gal-gal} \sim b^2 \times D^2(z)$$
$$w_{gal-shear} \sim b \times D^2(z)$$
$$w_{shear-shear} \sim D^2(z)$$

Measures growth of structure as function of redshift

 δ_m

redMaGic luminous red galaxies

Rozo et al. 2016: 1507.05460

Uses (redMaPPer) clusters to calibrate the red sequence of galaxies as a function of redshift and use this as a photometric template for red galaxy selection.

Key features:

designed for accurate and precise redshifts. approximately constant co-moving density approximately constant clustering bias selection has only two free parameters:

- desired co-moving density
- luminosity threshold of the galaxies

High photo-z precision was key several pour-poses:

calibration of **intrinsic alignments** from gg-lensing signal. photoz calibration of source distribution via cross-correlations.

We split the sample in 5 redshift bins

z range	L_{\min}/L_*	$n_{\rm gal} \; ({\rm deg}^{-2})$	$N_{ m gal}$
0.15 < z < 0.3	0.5	0.0134	63719
0.3 < z < 0.45	0.5	0.0344	163446
0.45 < z < 0.6	0.5	0.0511	240727
0.6 < z < 0.75	1.0	0.0303	143524
0.75 < z < 0.9	1.5	0.0089	42275

photo-z nearly gaussians for red-magic

Maps of observing conditions across the sky averaged over the different exposures (that happened at different times in each band)

- For the most part these fluctuations are removed when the depth and mask is built
- Residuals imprints can induce fake fluctuations !!

- Survey properties can contaminate the galaxy sample, biasing clustering measurements.
- We measure the mean galaxy density variations with survey properties.

• We test against 20 survey property maps in four bands (griz): depth, exposure time, PSF FWHM, airmass, sky brightness

Correlation found with multiple that in turn are correlated ! We can't correct for all of them.

Solution: Weight catalog by the correlation with a few maps. Choose maps such that this fixes other correlations

How do we choose the most important maps? How to distinguish noise from systematics ?

We produce a very large set of Gaussian (or log-normal) realisations of the galaxy distribution in the given bin

How do we choose the most important maps? How to distinguish noise from systematics ?

Repeat the same for the data

Look at the blue points

Apply weights for correlation with the most relevant first

Look at the blue points

Apply weights for correlation with the next relevant

Repeat until you reach no correlations at a given significance (e.g. 2 or 3 sigmas)

auto-correlations

cross-correlations [not used in fits]

The impact of systematics on parameter constrains

Testing for potential removal of modes

Combination with Weak Lensing

Compare & consistently combine three 2-point correlation functions

baseline systematics marginalization (20 parameters)

linear bias of lens galaxies, per lens z-bin lens galaxy photo-zs, per lens z-bin source galaxy photo-zs, per source z-bin multiplicative shear calibration, per source z-bin intrinsic alignments, power-law/free amplitude per per source z-bin

Combination with Weak Lensing

DES Y1 cosmology analysis assumes the identical linear bias for galaxy clustering and galaxy-galaxy lens in (inaccurate at small scales)

At fixed cosmology, measure galaxy bias separately for both probes.

We gains by combining

• DES-Y1 weak lensing: factor ~2 increase in constraining power

• Marginalized 6 cosmological parameters, 10 clustering nuisance parameters, and 10 lensing nuisance parameters

• Consistent cosmology constraints from weak lensing and clustering in configuration space

• Joint analysis constrains IA

DES alone is competitive with Planck (in some parameters) ! and compatible

- DES and Planck constrain matter density and S8 with equal strength
- Difference in central values 1-2σ in the same direction as earlier lensing results
- Bayes Factor 4.2 no evidence for inconsistency

Strongest constrains when fully combined

- DES and Planck constrain matter density and S8 with equal strength
- Difference in central values 1-2σ in the same direction as earlier lensing results
- Consistency is even stronger when combined with other low-z probes
- Strongest constrains in LCDM:

DES Y1 + CMB + BAO + JLA			
$S_8 = 0.799^{+0.014}_{-0.009}.$	$\Omega_m = 0.301^{+0.006}_{-0.008}.$		
$\sigma_8=0.801\pm0.014$	$h = 0.682^{+0.006}_{-0.006}$		

wCDM against LCDM

- no evidence for w different from -1 in any combination
- wCDM does not improve any of the evidence rations. Is not favoured over LCDM

 $w = -1.00^{+0.04}_{-0.05}.$

