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Why Large Scale Structure ?

• Number of modes in CMB (temperature) is saturated  !
• There is a large number of modes in 3 dimensions, if we could  
interpret them!
• Information is highly complementary to CMB (low-z cosmic 
acceleration and growth of structure, breaking of degeneracies)!



• Number of modes in CMB (temperature) is saturated  !
• There is a large number of modes in 3 dimensions, if we could  
interpret them!
• Information is highly complementary to CMB (low-z cosmic 
acceleration and growth of structure, breaking of degeneracies)!

Why Large Scale Structure ?

• Linear theory (valid on large scales)!
• Perturbative regime !
(weakly nonlinear)!
!
!
• One-halo term (virialised, non PT) !

Nonlinear Physics makes it complicated

Dark matter clustering!
Galaxy bias!
Redshift space distortions!
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Why Large Scale Structure ?

• Linear theory (valid on large scales)!
• Perturbative regime !
(weakly nonlinear)!
!
!
• One-halo term (virialised, non PT) !

Nonlinear Physics makes it complicated

Dark matter gravitational clustering!
Galaxy bias!
Redshift space distortions!



On large scales evolution of perturbations is determined by Cold Dark Matter (CDM)

CDM can be taken as a !
collision-less fluid 

Evolution of perturbations given by Vlasov Eq. !
(Collision-less limit of Boltzmann eq.) 

On sufficiently large scales where orbit crossing can be neglected Vlasov 
equation reduces to the dynamics of a pressure less perfect fluid (PPF)

N-body codes 

Standard Cosmological !
Perturbation Theory



Vlasov Equation (see PT review, Bernardeau et al arXiv 0112552 for full discussion on the next few slides)!

: Phase-space distribution function!

: Momentum per unit mass !

: Gravitational potential!

To solve it we take moments of the Vlasov equation,

Density Field (depends on x) 

Velocity Field (depends on x)

Stress Tensor : describes 
velocity dispersion 



Equations of motion !

Pressure-less perfect fluid (close the hierarchy) !

no source term depends !
solely on       or  

in principle an infinite!
hierarchy of moments

u�



scales much smaller than the Horizon (Hubble radius)                   Newtonian gravity 

scales larger than strong clustering regime                     single stream approximation 

no velocity dispersion or pressure 
(prior to virialization and shell crossing) 

velocity field can be assumed irrotational  

Nonlinear Gravitational Clustering 
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Standard Pert. Theory for a Pressure-less perfect fluid 

Linear Vertices (mode coupling)
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SPT for a Pressure-less perfect fluid 



First non-linear effects in the field

�(k, t) = a�(k, t0) + a(t)2
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monopole 
Spherical collapse

dipole
absent in spherically symmetric case	



moves modes

quadrupole
distorts the shapes	
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For the Power Spectrum
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to the bulk motions, ⇠̃g has a broader peak with ⌃2
⇤ given

by

⌃2
⇤ ⇡ 1
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dqPlin(q)[1�j0(q`BAO)+2j2(q`BAO)], (15)

where jn is the n

th order spherical Bessel function.
It is easy to perturbatively confirm the above result

when ⇠g is taken to be the dark matter correlation: The
leading contribution of the long wavelength modes to the
one-loop power spectrum of the peak reads5
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For q ⌧ k the expression in the square brackets simplifies
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and taking the Fourier transform with respect to k re-
produces (14).

Note that for any k, our approximation is valid for all
q ⌧ k while the above expressions are based on a rigid
separation of scales above and below ⇤. Of course, in
reality P

w
g (k) has support in a large range of momenta,

roughly (0.05�1) hMpc�1. Even if a q-mode falls in this
range, it is still true that its leading e↵ect on higher k

modes is the mere bulk motion. Therefore, it contributes
to the peak power through ⇠g,L, and at the same time,
broadens it by dispersing the shorter modes. A better
estimate of the width can be obtained by including for
each k the broadening e↵ect of all smaller q modes, i.e.
by taking ⇤ to increase with k. Below, we will implement
this idea by taking ⇤ = ✏k, with ✏ ⌧ 1.

Taking ✏ = 1/2, the above expression (18) predicts an
e↵ective broadening of ⌃✏k⇤ ⇡ 5.5h�1Mpc, where k⇤ is
defined by ⌃✏k⇤k⇤ = 1. This turns out to be a sizable
fraction of the actual width of the observed matter cor-
relation function. We compare the theoretical prediction
with the result of an N -body simulation6 in fig. 3. It is

5 The full one-loop power spectrum is given by
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as expected from the remark after (13).
6 We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h

�3Mpc3. The
matter density parameter is ⌦m = 0.272, the tilt ns = 0.967 and
the normalization �8 = 0.81. The leading cosmic variance has
been divided out, such that the error bars reflect the sub-leading
cosmic variance.
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FIG. 3. The acoustic peak in the matter correlation function

in linear theory (solid), 1-loop perturbation theory (dashed),

and simulation.

seen that the perturbative treatment has completely de-
formed the shape of the peak. A more accurate descrip-
tion should, therefore, treat the relative motions non-
perturbatively.

Infra-red resummation.— We can obtain a formula
which is valid to all orders in the relative displacement
�

q

/q, by rewriting (2) as (see e.g. [8])
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As before, this is only relevant in the presence of a fea-
ture. Taking the expectation value over the realizations
of the q modes, approximating them, as we did so far, as
being Gaussian, and using hexp(i')i = exp(� ⌦
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for Gaussian variables, we obtain our final expression
for the dressed two-point correlation function around
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To write the exponent in the above form, we have used
the fact that r2 ⇡ @

2
r [and therefore k

2 ⇡ (x̂ · k)2] up to
corrections of order �/`BAO. In principle, the exponen-
tial factor should only multiply the peak power P

w
g (k),

though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation

1504.04366

Performance of SPT 

note that the wiggles have shifted in the wrong way !
due to a cancellation between P13 and P22



SPT expands in terms of the linear density contrast 

This approach is valid on large-scales 
where fluctuations are small but it 
brakes down when approaching the 
nonlinear regime where

In detail the convergence of PT is related to the effective slope of the power spectrum at 
the nonlinear scale. If its very tilted then it works well (like a CDM spectra at high-z). !
As n approaches -1 different orders become of similar size and problems start to appear !

!

One way out is to sum up all orders ! 

�(k) = 4�k3P (k)



Standard PT up to 3 loops

Linear
NNLONLO

NNNLO

N-body
Horizon Run 2, 	


 Kim et al. 11
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Renormalized Perturbation Theory !
(resummation of IR-modes)

Work from several groups and people (Bernardeau, Crocce, Grinstein, Pietroni, Taruya, 
Scoccimarro, Matsubara, Wise, Blas, Zaldarriaga, Senatore, etc. incomplete list !! ) 
Approaches RPT, RegPT, TSPT, IR -EFT, others (incomplete list !!)



Power Spectrum :

all diagrams of this type are systematically put together

linear growth	


factor

one-loop 
correction

final den or vel field 

�(1)(k, z) =

�D(k � k1)�(1)
a (k, z)P0(k) = ��a(k, z)�0(�k1)�

• its the cross-correlation with ICs 	


• it can be measured in n-body	


• Nonlinear propagator

…



Power Spectrum :

The rest of the diagrams are mode-coupling terms (and can be re-summed)

PMC(k)



Resummation of IR-modes

It is possible to show that when you consider the high k limit, or in other words the  
modes running inside the loops q (IR-modes) are << k  the diagrams simplify to
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This is the variance of the displacement field,  its 
dominated by large scale flows (~ 6 Mpc/h)

high-k 
(low-q)

Following Crocce and Scoccimarro 2006 in what follows (as an example)



Resummation of IR-modes

It is possible to show that when you consider the high k limit, or in other words the 
contribution to these integrals of modes q << k (IR-modes) the diagrams simplify to

�(1)(k, z) = D(z)
�
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�
P (q)/q2d3q This is the variance of the displacement field,  its 

dominated by large scale flow (~ 6Mpc/h)

On very large scales we can use PT to!
compute corrections ( ~ P13)

high-k

low-k

Ansatz

f(k) is very close to just �k2�2
v



4

to the bulk motions, ⇠̃g has a broader peak with ⌃2
⇤ given

by

⌃2
⇤ ⇡ 1

6⇡2

Z ⇤

0

dqPlin(q)[1�j0(q`BAO)+2j2(q`BAO)], (15)

where jn is the n

th order spherical Bessel function.
It is easy to perturbatively confirm the above result

when ⇠g is taken to be the dark matter correlation: The
leading contribution of the long wavelength modes to the
one-loop power spectrum of the peak reads5
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and taking the Fourier transform with respect to k re-
produces (14).

Note that for any k, our approximation is valid for all
q ⌧ k while the above expressions are based on a rigid
separation of scales above and below ⇤. Of course, in
reality P

w
g (k) has support in a large range of momenta,

roughly (0.05�1) hMpc�1. Even if a q-mode falls in this
range, it is still true that its leading e↵ect on higher k

modes is the mere bulk motion. Therefore, it contributes
to the peak power through ⇠g,L, and at the same time,
broadens it by dispersing the shorter modes. A better
estimate of the width can be obtained by including for
each k the broadening e↵ect of all smaller q modes, i.e.
by taking ⇤ to increase with k. Below, we will implement
this idea by taking ⇤ = ✏k, with ✏ ⌧ 1.

Taking ✏ = 1/2, the above expression (18) predicts an
e↵ective broadening of ⌃✏k⇤ ⇡ 5.5h�1Mpc, where k⇤ is
defined by ⌃✏k⇤k⇤ = 1. This turns out to be a sizable
fraction of the actual width of the observed matter cor-
relation function. We compare the theoretical prediction
with the result of an N -body simulation6 in fig. 3. It is

5 The full one-loop power spectrum is given by
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as expected from the remark after (13).
6 We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h

�3Mpc3. The
matter density parameter is ⌦m = 0.272, the tilt ns = 0.967 and
the normalization �8 = 0.81. The leading cosmic variance has
been divided out, such that the error bars reflect the sub-leading
cosmic variance.
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FIG. 3. The acoustic peak in the matter correlation function

in linear theory (solid), 1-loop perturbation theory (dashed),

and simulation.

seen that the perturbative treatment has completely de-
formed the shape of the peak. A more accurate descrip-
tion should, therefore, treat the relative motions non-
perturbatively.

Infra-red resummation.— We can obtain a formula
which is valid to all orders in the relative displacement
�
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/q, by rewriting (2) as (see e.g. [8])
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As before, this is only relevant in the presence of a fea-
ture. Taking the expectation value over the realizations
of the q modes, approximating them, as we did so far, as
being Gaussian, and using hexp(i')i = exp(� ⌦

'

2
↵
/2)

for Gaussian variables, we obtain our final expression
for the dressed two-point correlation function around
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To write the exponent in the above form, we have used
the fact that r2 ⇡ @

2
r [and therefore k

2 ⇡ (x̂ · k)2] up to
corrections of order �/`BAO. In principle, the exponen-
tial factor should only multiply the peak power P

w
g (k),

though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation
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The BAO in SPT
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where jn is the n

th order spherical Bessel function.
It is easy to perturbatively confirm the above result

when ⇠g is taken to be the dark matter correlation: The
leading contribution of the long wavelength modes to the
one-loop power spectrum of the peak reads5
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and taking the Fourier transform with respect to k re-
produces (14).

Note that for any k, our approximation is valid for all
q ⌧ k while the above expressions are based on a rigid
separation of scales above and below ⇤. Of course, in
reality P

w
g (k) has support in a large range of momenta,

roughly (0.05�1) hMpc�1. Even if a q-mode falls in this
range, it is still true that its leading e↵ect on higher k

modes is the mere bulk motion. Therefore, it contributes
to the peak power through ⇠g,L, and at the same time,
broadens it by dispersing the shorter modes. A better
estimate of the width can be obtained by including for
each k the broadening e↵ect of all smaller q modes, i.e.
by taking ⇤ to increase with k. Below, we will implement
this idea by taking ⇤ = ✏k, with ✏ ⌧ 1.

Taking ✏ = 1/2, the above expression (18) predicts an
e↵ective broadening of ⌃✏k⇤ ⇡ 5.5h�1Mpc, where k⇤ is
defined by ⌃✏k⇤k⇤ = 1. This turns out to be a sizable
fraction of the actual width of the observed matter cor-
relation function. We compare the theoretical prediction
with the result of an N -body simulation6 in fig. 3. It is

5 The full one-loop power spectrum is given by
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as expected from the remark after (13).
6 We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h

�3Mpc3. The
matter density parameter is ⌦m = 0.272, the tilt ns = 0.967 and
the normalization �8 = 0.81. The leading cosmic variance has
been divided out, such that the error bars reflect the sub-leading
cosmic variance.
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FIG. 3. The acoustic peak in the matter correlation function

in linear theory (solid), 1-loop perturbation theory (dashed),

and simulation.

seen that the perturbative treatment has completely de-
formed the shape of the peak. A more accurate descrip-
tion should, therefore, treat the relative motions non-
perturbatively.

Infra-red resummation.— We can obtain a formula
which is valid to all orders in the relative displacement
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As before, this is only relevant in the presence of a fea-
ture. Taking the expectation value over the realizations
of the q modes, approximating them, as we did so far, as
being Gaussian, and using hexp(i')i = exp(� ⌦
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for Gaussian variables, we obtain our final expression
for the dressed two-point correlation function around
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To write the exponent in the above form, we have used
the fact that r2 ⇡ @

2
r [and therefore k

2 ⇡ (x̂ · k)2] up to
corrections of order �/`BAO. In principle, the exponen-
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though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation
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N-body

PT 1-loop



RPT Damping of the Baryon Acoustic Oscillations

�(r) = [�linear � �2
��] + �Mode Coupling(r)



What’s going on?

1202.0090

A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c� 0000 RAS, MNRAS 000, 000–000

rBAO

The degradation of the BAO peak is due to large scale flows

One can try to ‘substract’ the bulk motion to reconstruct the 
original peak 

* Some of this can be !
done directly in data. !
Reverse engineering



Power Spectrum Performance 
for different cosmological models at z = 1

CODES PUBLICLY AVAILABLE 
(MPTbreeze, RegPT)

Crocce, Scoccimarro and Bernardeau (2012)



The resummation above (RPT) breaks galilean invariance !
because it resums only the (unequal time) propagator

SPT : large cancellation between diagrams at each order, !
hard to understand the influence of long-wavelength modes.

There are further terms in the SPT expansion that need to !
be resumed to restore galilean invariance, and have a better 
control of IR sensitivity (e.g. see TSPT: Blas et al 2016, gRPT)

BAO damping is quite well understood by now



How to quantify the impact of small scale!
structures on the growth of large scale modes ?

Response functions (Bernardeau Nishimichi Taruya 2015 +)!

One key issue in PT is that kernels become increasingly sensible to the small scales 



How to quantify the impact of small scale!
structures on the growth of large scale modes ?

We think at least part of this !
problem is the missing stress tensor!

in the EoM which suppresses!
power on small scales

One key issue in PT is that kernels become increasingly sensible to the small scales 

Response functions (Bernardeau Nishimichi Taruya 2015 + follow ups)!



P (k) or any PTquantity

Response functions



Response functions

measure this in sims

At high-q its suppressed !



Effective Field Theory
The UV (small scales) problem:!

1) The loops in SPT are too sensitive to small scales!

2) The UV has a back reaction into the large-scales that is unphysical.!

3) The EoM do not include velocity dispersion (stress tensor)

coarse grained variables

write down EoM!
in these variables

In order to close the hierarchy

Baumann, Nicolis, Senatore, Zaldarriaga 2010 and many papers afterwards 	





Effective Field Theory

contains errors of PT 
and microscopic stress



Baldauf Mercolli Zaldarriaga 2015

• Figure is using one parameter fit with a concrete counter-term!
• In general (at 2 loops etc) there are several counter-terms. !
• One needs to have an argument to put them to zero, or leave them as 

nuisance, etc 



EFT Performance (roughly!):!
 !

One-loop Eulerian EFT k1% = 0.1 h Mpc−1, two-loop Eulerian !

EFT k1% =0.3 h Mpc−1 at z=0!

!

EFT Limitations:!
!

How to deal with many counter-terms, and their time evolution!
Degeneracies, particularly with bias!
Stochastic term from one-halo physics ⇒ leads to percent level corrections !

at k = 0.3 hMpc−1!



SPT+IR (RPT, RegPT, etc .. roughly!)!
Within 2% at k ~ 0.3 at z ~ 1 or k ~ 0.25 at z ~ 0.5. !
Discussions on assumptions, need to include further diagrams etc,!

!

Using response functions and N-body measurements!
k1% at k = 0.3 - 0.4 hMpc−1 !

(only for density spectrum so far)

THANKS 


