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Where are we?



always small potentials

8⇡GTm
µ⌫ = Gµ⌫

Gravity

(relativistic effects at large scales)

Matter

matter, dark matter, 
dark energy, (m)neutrinos, photons
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i) Background evolution

hAµ⌫i isotropic and homogeneous

H2 =
8⇡G

3
a2

X
⇢n̄

d

dt
H = �4⇡

3
Ga2

X
(⇢̄n + 3P̄n)

fast implementation (e.g. in CLASS)

Theoretical framework

matter sector can be tricky
(e.g. recombination, imperfect fluids,…)

Ā ⌘



i) Background evolution (uncoupled species)

Theoretical framework

36 CHAPTER 2. HOMOGENEOUS COSMOLOGY

Figure 2.5: Evolution of the square of the Hubble parameter, in a scenario in
which all typical contributions to the universe expansion (radiation, matter,
curvature, cosmological constant) dominate one after each other.

2.3.4 Various possible scenarios for the history of the uni-
verse

Let us write the Friedmann law including all possible contributions to the ho-
mogeneous cosmological fluid mentioned so far:

H2 =

✓
ȧ

a

◆2
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⇢M � k
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⇤
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(2.55)

where ⇢R is the radiation density and ⇢M the matter density. The order in which
we wrote the four terms on the right–hand side – radiation, matter, spatial
curvature, cosmological constant – is not arbitrary. Indeed, they evolve with
respect to the scale factor as a�4, a�3, a�2 and a0. So, if the scale factors keeps
growing, and if these four terms are present in the universe, there is a chance
that they all dominate the expansion of the universe one after each other (see
figure 2.5). Of course, it is also possible that some of these terms do not exist
at all, or are simply negligible. For instance, some possible scenarios would be:

• only matter domination, from the initial singularity until today (we’ll come
back to the notion of Big Bang later).

• radiation domination ! matter domination today.

• radiation dom. ! matter dom. ! curvature dom. today

• radiation dom. ! matter dom. ! cosmological constant dom. today

But all the cases that do not respect the order (like for instance: curvature
domination ! matter domination) are impossible.

During each stage, if we assume that one component strongly dominates the
others, the behavior of the scale factor, Hubble parameter and Hubble radius
are given by:

1. Radiation domination:

ȧ2

a2
/ a�4, a(t) / t1/2, H(t) =

1

2t
, RH(t) = 2t. (2.56)

H2

radiation domination

matter domination
curvature domination

cosmological constant 



Theoretical framework

ii) Dynamics over the background

Dark Energy
Simplest hypothesis (cosmological constant) is that it has no dynamics 

⇢̄ = �P̄

The rest of species: Boltzmann equation

Distribution function in phase space

f(x, p, t) = f0(|p|, t)(1 + �f)

isotropic and homogeneous part
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Theoretical framework

Boltzmann equation
(phase-space conservation)

(changes number of particles)
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Theoretical framework
The idea is to deal with ‘field’ quantities (moments)

For the different species different approximations simplify this analysis
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…

Energy density

Velocity field

They satisfy a chain of hierarchical equations
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Theoretical framework

Photons ⇢̄ = 3P̄

Treatment linear in �f (no cluster)
Coupled to ions and electrons 

hierarchy of moments of �f

Equations solved efficiently by Boltzmann codes (they generate the CMB!)

hierarchy organised in k powers

R
p2dp�fR
p2dpf

⌘

(G is the difference of polarizations)

coupling with ions



Theoretical framework

Baryons P̄ ⇡ 0

As the rest, produced in adiabatic mode (small dispersion)
Coupled to photons before recombination 

They have internal dynamics at small scales:
e.g. they have a Jeans scale associated to

They cluster, but perturbation theory remains valid at large scales
also they are subdominant wrt dark matter clustering

hierarchy cut for non-relativistic 
species starting in adiabatic mode
(slow, small dispersion, coupled to ph)



Theoretical framework

Dark matter P̄ ⇡ 0

The evidence for DM requires a substance that clusters at different 
scales and generates halos

Tµ⌫ = ⇢uµu⌫ + (p+ ⇡b)(g
µ⌫ + uµu⌫) +⇧µ⌫

which are its ‘material’ properties? for instance the mass…

Thermal relicNon-thermal generation keV ???

of what? particles? condensate? modified gravity?

from Ly-a (ask Font-Ribera)/Tremaine-Gunn for fermions

generating mechanism

from uncertainty principle



dpiA
dt

= �amA@i�piA ⌘ amAv
i
A ,

‘Particles’ interacting through gravity 
and with small velocity dispersion

Cold DM

Theoretical framework
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This is important when
the perturbations grow



+ dispersionv̇i +Hvi + vj@jv
i = �@i�� @ip

⇢

Linear growth for CDM

�̇ + @i((1 + �)vi) = 0
Subhorizon

It is better to go to Fourier space

✓ = @iv
i !i = ✏ijk@ju

k

vorticity decays in expanding bckgr.

!i ⇠ a�1

�̈k +H�̇k =
3

2
⌦mH2�k � c2sk

2�

H2 ⌧ k2

friction growth!

�� =
3

2
H2

X
⌦n�n



Linear growth for PF

Solution at large scales for DM domination

�k = Aka+Bka
�3/2

growing mode!

✓k = �H
✓
Aka� 3

2
Bka

�3/2

◆

⌦m = 1

during radiation domination the overdensities don’t grow



Stochastic random fields
The comparison with data is done at a statistical level: 
e.g. what is the probability that two dense regions are 

at a certain distance at a certain time? (correlation function)

h�(x)�(x+ r)i = ⇠(r)

ergodic assumption: ensemble average = spatial average
and consider           as random variables�(x, t)

A lot of information (about dynamics, other initial 
conditions,…) in higher order correlations 

h�k1�k1�k1i = �(3)(
X

k)B(k1, k2)

(homogeneity)

(homogeneity)

Power spectrum

h�k(t)�k0(t)i = 2⇡2�(3)(k + k0)P (k)

the distribution was very Gaussian (all the information is
in the PS) at  primordial times (inflation)



  gaussian initial scale invariant PS + radiation-matter 
transition + BAO imprint
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Horizon Run 2,  Kim et al. 11

Linear

Tests cosmic expansion!
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z = 0

Anderson et al. 12

�k ⇠ a(t)
Failure is inevitable:

perturbations grow + we ignored the dispersion

at which scales? at which precision?  (e.g. baryonic effects)

Linear vs Non Linear PS vs Observations



Beyond linear theory: General Statements

One ‘solves’ the small distances and keeps the large ones

Effective approach: encapsulate these effects in operators of L

Pietroni et al 11, Carrasco et al 12
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Negligible at .2! 

Pueblas, Scoccimarro 09

Effects of coefficients from small scales

FIG. 9: Correction to the PPF approximation for the
velocity divergence (three top lines) and density power
spectrum (three bottom lines) due to velocity dispersion
at redshifts z = 0 (solid), z = 0.5 (dashed) and z = 1
(dotted). Note that the actual correction is negative in
all cases, we plot their absolute values. These correc-
tions are computed in linear theory, Eqs. (45) and (48),
thus extrapolation well beyond k ∼ 0.1 h Mpc−1 is only
illustrative.

spectrum reads

Pw(k) =

(

2

nvd + 1

)2

Pqw
(k). (39)

Figure 8 shows the results of this consistency check.
In it, we show the measured left and right hand sides
of Eq. (39) for redshifts z = 0, 1, 3. The agreement
in all cases is very good, improving, as expected, for
higher redshifts.

B. PT + Velocity Dispersion

We are interested in estimating the large-scale cor-
rections to the PPF approximation due to the orbit-
crossing induced qθ and qw. As we can see from
the linearized equations of motion, Eqs. (35-37), the

scalar mode of the stress tensor corrects the PPF ap-
proximation already at the linear level, whereas the
vector modes are decoupled in linear theory and cor-
rect the PPF at higher-order in PT. In this section
we estimate the corrections due to the scalar mode
qθ (roughly speaking, velocity dispersion), while in
the next section we tackle the corrections induced
by qw at leading order in nonlinear PT. Since these
deviations are small at large scales we can consider
them separately.

The scalar mode correction can be included by
writing the modified linear theory of Eqs. (35-36) in
a compact form by using a two-component object
ψ1 = δ, ψ2 = θ that obeys the linear equations of
motion,

∂ηψa(k, η) + Ωab ψb(k, η) = Qa(k, η), (40)

where Ωab is the 2x2 matrix,

Ωab =

(

0 −1

− 3
2

1
2

)

(41)

and Q(k, η) = (0, qθ(k, η)). The formal solution to
these equations can be written as

ψa(k, η) = gab(η)φb(k)+

∫ η′

0
dη′gab(η−η

′)Qb(k, η′),

(42)
where φ represents the initial conditions and gab is
the linear propagator [48],
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(

−2 2

3 −3

)

(43)

Then, the density field in linear theory is given by

δ(k, η) = δppf(k, η) +
qθ(k, η)

(nvd/2 − 1)(nvd/2 + 3/2)
,

(44)

where, as in Eq. (38), we assumed that qθ ∝ Dnvd/2
+ ,

and δppf(k, η) ≡ gab(η)φb(k) is the usual linear the-
ory evolved density field in the PPF approximation.
We can then write the density power spectrum to
leading order in PPF corrections as

Pδδ(k) = Pppf(k)+
2 Pδ qθ

(k)

(nvd/2 − 1)(nvd/2 + 3/2)
, (45)
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Theoretical framework
Neutrinos

They are massive but with tiny masses 

they are produced relativistic, behave as photons (except for
the coupling to matter), get cold and then behave as 

dark matter (cluster, non-linear)

Their treatment requires more care than for other species

0.06 eV <
X

 =e,µ,⌧

m⌫ 

X

 =e,µ,⌧

m⌫ < 2 eV (95% CL)
X

 =e,µ,⌧

↵⌫ m⌫ 

Laboratory constraints

Cosmology constraints (more on Pastor/Mena talks)

,

X
mi < 0.14 (95%)

?



thermal background

Massive: when                       , neutrinos become cold (cluster)p ⌧ E(p) ⇠ m

(linear) Boltzmann equation (                           )E(p) =
p
p2 +m2

⌫

�⇢⌫ =

Z
d

3
pE(p)f⌫(⌘, x̄, p̄)

Massless neutrinos                 free-stream and do not clusterE(p) = p

�⇢⌫(k)
00 = (c2(⌘)k2 � 3a2H2/2)�⇢⌫(k) + ...,

1/3

c(⌘) ⇠ T⌫(⌘)/m⌫kfs ⇠ aH/c ,

f⌫0(⌘, p) ⌘
⇣
ep/T⌫ + 1

⌘�1

known law e.g. Shoji, Komatsu 2010

Description of neutrinos

they behave as DM!

efficiently treated in Boltzmann codes 



Effects of     on the linear power spectrumm⌫

Lesgourgues, Mangano, Miele, Pastor CUP 20136.1 Linear matter power spectrum 295
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Figure 6.4 Matter power spectrum at redshift zero for a !CDM model with three
degenerate massive neutrino species (mν = 0.3 eV), compared to the individual
power spectrum of CDM, baryon and neutrino density perturbations. In this model
knr is equal to 5.1 × 10−3h/Mpc (see Eq. (5.94)). For wavenumbers k > knr, neu-
trino perturbations remain smaller than CDM and baryon perturbations, because
of their low growth rate after the nonrelativistic transition.

same #M and primordial power spectrum). Indeed, before the Hubble radius
is crossed, all perturbations are subject to the usual universal relations given
by Eq. (5.24) for adiabatic initial conditions. After Hubble crossing, if k < knr,
neutrino free-streaming can be neglected: massive neutrinos share the same evo-
lution as CDM and fall into the same potential wells, with δν quickly reaching the
asymptotic value of Eq. (6.57). Hence all quantitites evolve exactly as described
in Section 5.24, with neutrinos being counted as part of the cold dark matter
component. Because the matter power spectrum depends only on #M and PR(k)
for wavenumbers k < keq, and because knr < keq, two models with different
neutrino masses but the same total matter fraction and primordial spectrum are
indistinguishable on those scales.! for k ≫ knr, we can use the fact that at low redshift and for the cosmological
scales of interest in this book, |δν | ≪ |δC| = |δB|. If we expand the total matter
fluctuation as

δM = fCδC + fBδB + fνδν (6.58)
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WiggleZ, SDSS

Audren et al. 2013 EUCLID Forecast
based on HALOFIT

spectrum realization corresponding to the same model. As illustrated in [22], the two

options lead to the same forecast errors, so for simplicity we assume an observed power

spectrum equal to the theoretical power spectrum of the fiducial model.
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Figure 1: Observable spectrum (top) and relative error on this spectrum (bottom), for the first
redshift bin (left) and last redshift bin (right) of a Euclid-like galaxy redshift survey. The quan-
tity displayed in the top is the galaxy power spectrum Pg(kref , µ, z) as a function of the fiducial
wavenumber k

ref

, for fixed redshift and perpendicularly to the line of sight (µ = 0), rescaled by the
inverse squared bias b(z)�2 and by a factor H(z)/DA(z)2: it is therefore a dimensionless quantity.
The upper plots show a comparison between a model with massless neutrinos and our fiducial model
(M⌫ = 3m⌫ = 0.21 eV). Solid lines are derived from the non-linear matter power spectrum using
the updated halofit version of ref. [24], while dashed lines are derived from the linear power spec-
trum. The lower plots show the part of the relative error coming from observational or theoretical
errors only (cosmic variance is included in the observational error). In these plots, the individual
1-� error on each data point has been rescaled by the square root of the number of points, in such
a way that the edges of the error bands correspond to a shift between theory and observation lead-
ing to ��2 = 1, when only the observational or theoretical error is incorporated in the likelihood
expression. In these lower plots, we also show for comparison the ratio between a massless model
and a model with the minimum total mass allowed by neutrino experiments, M⌫ = 0.05 eV.

We fit the mock and Euclid-like spectra using the MCMC code MontePython [27].

MontePython uses the Metropolis-Hastings algorithm like CosmoMC [28], but is in-

terfaced with class [29, 30] instead of camb [31], is written in python, and has extra

functionality; it will soon be released publicly, including the Euclid-like likelihood codes
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FIG. 2: Theoretical errors for the linear theory and one-loop
power spectrum (see Eq. (42)) as a function of k. The cosmic
variance is plotted for the redshift bin 1 < z < 2. Three solid
lines are relative suppression of the power spectrum for three
di↵erent M⌫ .

case of the power spectrum

Eb(k1, k2, k3, z) = Btree(k1, k2, k3, z)

⇥ 3b31

✓
D+(z)

D+(0)

◆2l
(
(k̂t/3/0.31)1.8 l = 1 ,

(k̂t/3/0.23)3.3 l = 2 ,

(43)

where k̂t = (k1 + k2 + k3)/hMpc�1. This is just an ap-
proximation which certainly does not capture the full
shape of higher loop corrections. However, it provides
a good estimate for the error. We checked it against ex-
plicit one-loop calculation of [25] and an estimate of the
two-loop bispectrum from the N -body simulations in the
same study. As an additional check we compared our
error estimate in the squeezed configuration with the ap-
proximate equations for the squeezed limit bispectrum
[28, 29] and found a good agreement.

Parameters and priors.— To summarize, in our joint
analysis we use the following set of parameters

p = {fNL,M⌫ , A,Rp, Rb, b1, b2, bG
2

, b�
3

} . (44)

In most of our forecasts, unless otherwise specified, we
use the following fiducial values

p0 = {0, 0.06 meV, 1, 1 h�1Mpc, 1 h�1Mpc,

2, 0.5, 0.1, 0.1} .
(45)

There are no priors on fNL and M⌫ . Priors for other

parameters are

�A = 0.02 , �b
1

= 4 , �b
2

= 2 ,

�Rp = �Rb = 1 h�1Mpc , �bG
2

= �b
�

3

= 1 .
(46)

For simplicity, we assume that a single galaxy sample
with specific bias parameters spans the whole range from
z = 0 to z = 5. We are aware that this is a unrealistic
scenario, but it is in line with our general approach for
giving lower bounds on the errors of primordial NG. In-
creasing the number of free parameters can only degrade
the constraints. For neutrino mass only the relatively low
redshifts (z < 2) are relevant where the results should be
more robust.
We are also going to use di↵erent values of shot noise.

We will always set sp(z) = sb,2(z) = 1/n(z) and sb,1(z) =
1/n2(z) with priors of 10% in both cases. Here n(z) is
the number density of galaxies at redshift z. In reality,
the redshift dependence should account both for the fact
that distant galaxies are dimmer and that they evolve
in time. Therefore, it is a function both of the survey
properties, selection criteria, formation history and evo-
lution of di↵erent types of galaxies or other tracers. To
roughly get an idea how this redshift dependence a↵ect
the results, we will use a simple power law

n(z) = n0(1 + z)↵ , (47)

with di↵erent values of ↵. For the number density at
redshift zero n0, we use a range of values of n0 = (10�2�
10�3) h3Mpc�3.
In a couple of examples we will make forecast without

the theoretical errors. In these cases it is important to
specify what is kmax that is used. Our choice is

kmax(z) = 0.2 hMpc�1

✓
D+(z)

D+(0)

◆�4/3

. (48)

This coincides with the usual choice of kmax =
0.2 hMpc�1 at redshift zero as the scale where the per-
turbation theory breaks down. The time dependence is
chosen to mach the evolution of the nonlinear scale for a
scaling universe with n = �1.5.
For forecasts which include the theoretical error, kmax

is automatically determined as the point at which the
signal stops to grow. In order to avoid checking this
condition at each step, we will always use kmax given by
Eq. (48). We have checked that in all our examples the
signal saturates below kmax = 0.2 hMpc�1.
For all our forecasts we use a sky fraction of fsky = 0.5.

III. RESULTS

In this section we apply the method described above to
see how much the theoretical error degrades the con-
straints and what are the realistic values of the sum of
neutrino mass and primordial NG that one can hope to
get from future surveys.

Baldauf et al 2016

Is it enough?
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Figure 6.4 Matter power spectrum at redshift zero for a !CDM model with three
degenerate massive neutrino species (mν = 0.3 eV), compared to the individual
power spectrum of CDM, baryon and neutrino density perturbations. In this model
knr is equal to 5.1 × 10−3h/Mpc (see Eq. (5.94)). For wavenumbers k > knr, neu-
trino perturbations remain smaller than CDM and baryon perturbations, because
of their low growth rate after the nonrelativistic transition.

same #M and primordial power spectrum). Indeed, before the Hubble radius
is crossed, all perturbations are subject to the usual universal relations given
by Eq. (5.24) for adiabatic initial conditions. After Hubble crossing, if k < knr,
neutrino free-streaming can be neglected: massive neutrinos share the same evo-
lution as CDM and fall into the same potential wells, with δν quickly reaching the
asymptotic value of Eq. (6.57). Hence all quantitites evolve exactly as described
in Section 5.24, with neutrinos being counted as part of the cold dark matter
component. Because the matter power spectrum depends only on #M and PR(k)
for wavenumbers k < keq, and because knr < keq, two models with different
neutrino masses but the same total matter fraction and primordial spectrum are
indistinguishable on those scales.! for k ≫ knr, we can use the fact that at low redshift and for the cosmological
scales of interest in this book, |δν | ≪ |δC| = |δB|. If we expand the total matter
fluctuation as

δM = fCδC + fBδB + fνδν (6.58)
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Neutrinos at late times
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linear physics
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 (even linear order is NOT a fluid at all redshift)

+O(T⌫/m⌫)

How to include    non-linearities?
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Conclusions

moments of the Boltzmann equation allow for analytical 
treatment
the typical approximations are: linearity and small dispersion 
(coldness of the medium)
photons, baryons, dark energy: treated efficiently
dark matter and massive neutrinos are more complicated: 
they cluster (linearity), and neutrinos are hot at early stages

Perturbations over the background are produced by different 
components with different properties: Boltzmann equation

Evolution of the background ‘easy’ for the different components 

These methods allow to get the fingerprints of the universe. They 
can be extended to study new properties (Zumalacarregui’s talk)



Neutrinos mass

Dark matter properties 

m⌫

Dark energy properties 
⇢̄ = �P̄?

Some goals

new dynamics? 



Some tools…

http://sns.ias.edu/matiasz_filedrop/

Many tools for 1 loop calculations

https://arxiv.org/abs/1603.04826
Fast 1 loop


