CMB polarization Review of current and future experiments

Ricardo Génova Santos (IAC)

Inflation

Epoch of exponential expansion of the Universe with nearly constant energy density. Between 10^{-36} and 10^{-32} s after the BB the size of the Universe increased a factor ~ 10^{26}

Proposed in the 80s (Starobinsky 1980, Guth 1981, Linde 1982, Albretch & Steinhardt 1982), it solves several problems of standard Big Bang cosmology:

- Horizon problem
- Flatness problem
- Absence of unwanted relics (magnetic monopoles)
- Consequences of inflation:
 - Density perturbations \Rightarrow seeds for the Universe's structure \rightarrow scalar perturbations
 - Creates gravitational waves (ripples in the space-time metric) -> tensor perturbations

Inflation

Epoch of exponential expansion of the Universe with nearly constant energy density. Between 10^{-36} and 10^{-32} s after the BB the size of the Universe increased a factor ~ 10^{26}

Proposed in the 80s (Starobinsky 1980, Guth 1981, Linde 1982, Albretch & Steinhardt 1982), it solves several problems of standard Big Bang cosmology:

- Horizon problem
- Flatness problem
- Absence of unwanted relics (magnetic monopoles)
- Consequences of inflation:
 - Density perturbations \Rightarrow seeds for the Universe's structure \rightarrow scalar perturbations
 - Creates gravitational waves (ripples in the space-time metric) -> tensor perturbations
- Generic predictions of inflation:
 - Flat geometry (by construction) \checkmark
 - Nearly scale-invariant perturbations (with $n_{es} < 1$ but close to unity) \checkmark CMB temperature
 - Nearly Gaussian perturbations in all scales \checkmark

CMB temperature

CMB polarization

Inflation

Epoch of exponential expansion of the Universe with nearly constant energy density. Between 10^{-36} and 10^{-32} s after the BB the size of the Universe increased a factor ~ 10^{26}

Proposed in the 80s (Starobinsky 1980, Guth 1981, Linde 1982, Albretch & Steinhardt 1982), it solves several problems of standard Big Bang cosmology:

- Horizon problem
- Flatness problem
- Absence of unwanted relics (magnetic monopoles)
- Consequences of inflation:
 - Density perturbations \Rightarrow seeds for the Universe's structure \rightarrow scalar perturbations
 - Creates gravitational waves (ripples in the space-time metric) -> tensor perturbations
- Generic predictions of inflation:
 - Flat geometry (by construction) \checkmark
 - Nearly scale-invariant perturbations (with $n_{\rm es}$ <1 but close to unity) \checkmark
 - Nearly Gaussian perturbations in all scales \checkmark
 - Gravitational waves, with nearly scale-invariant spectrum for the simplest models \longrightarrow Detection by BICEP2

Observations

BICEP2 results Other experiments

QUIJOTE *i* Conclusions

CMB polarization

 The CMB anisotropies are intrinsically polarized due to Thomson scattering during recombination

* A net polarization is generated during recombination in the presence of a quadrupole in the incident radiation field

The resulting polarization is linear, i.e. the CMB will have non-zero Stokes parameters Q and U, but V=0

Observations 📜

BICEP2 results

Other experiments

QUIJOTE

CMB polarization

 The CMB anisotropies are intrinsically polarized due to Thomson scattering during recombination

A net polarization is generated during
 recombination in the presence of a quadrupole in
 the incident radiation field

The resulting polarization is linear, i.e. the CMB will have non-zero Stokes parameters Q and U, but V=0

Polarization maps can usually be decomposed into:

- **E-modes** (analog to gradient component)
- **B-modes** (analog to curl component)

Kamionkowski et al. 1997; Seljak & Zaldarriaga 1997

Observations

BICEP2 results Other ex

Other experiments

Conclusio

CMB polarization

 The CMB anisotropies are intrinsically polarized due to Thomson scattering during recombination

A net polarization is generated during
 recombination in the presence of a quadrupole in
 the incident radiation field

The resulting polarization is linear, i.e. the CMB will have non-zero Stokes parameters Q and U, but V=0

Polarization maps can usually be decomposed into:

- **E-modes** (analog to gradient component)
- **B-modes** (analog to curl component)

Kamionkowski et al. 1997; Seljak & Zaldarriaga 1997

QUIJOTE

 Different types of anisotropies 		E-modes	B-modes
in the primordial universe create	Scalar (density perturbations)	\checkmark	X
different types of modes	Tensor (gravitational waves)	\checkmark	\checkmark

Observations

BICEP2 results Other experiments

QUIJOTE Conclusions

Power spectra of scalar (density) and tensor (GW) perturbations:

BICEP2 results Other experiments

QUIJOTE Conclusions

Amplitude of the B-mode power spectrum:

• Tensor-to-scalar ratio:

$$= \frac{P_{tensor}(k_0)}{P_{scalar}(k_0)} = 0.008 \left(\frac{E_{inf}}{10^{16} GeV}\right)^4$$

- $E_{inf}=2.6\times10^{16}$ GeV corresponds to r=0.37, and $E_{inf}=3.2\times10^{15}$ GeV to r=8.4×10⁻⁵
- r=0.01 corresponds to the GUT scale (~ 10^{16} GeV)

r

BICEP2 results Other experiments QUIJOTE Conclusions

Observability of B-modes

- Signals are extremely small!!
 - r=0.2 corresponds to an RMS B-mode anisotropy < 200 nK
- \Rightarrow Extremely high sensitivities are required \Rightarrow large number of very-sensitive detectors with large bandwidths needed

$$\Delta T_{\rm RMS} = \frac{T_{\rm sys}}{\sqrt{\Delta\nu \ t \ N_{\rm chan}}} \sqrt{\frac{\Omega_{\rm sky}}{\Omega_{\rm beam}}}$$

(Final map sensitivity)

Experiment	Final map sensitivity (µK/degree)		
COBE	~190		
WMAP @ 94 GHz (DR5)	4.3		
Planck @ 143 GHz (DR1)	0.46		
BICEP2 @ 150 GHz	0.087		

Observations

BICEP2 results (Other experiments) QUIJOTE (Conclusions

Observability of B-modes

- Signals are extremely small!!
 - r=0.2 corresponds to an RMS B-mode anisotropy < 200 nK
- \Rightarrow Extremely high sensitivities are required \Rightarrow large number of very-sensitive detectors with large bandwidths needed

$$\Delta T_{\rm RMS} = \frac{T_{\rm sys}}{\sqrt{\Delta\nu \ t \ N_{\rm chan}}} \sqrt{\frac{\Omega_{\rm sky}}{\Omega_{\rm beam}}}$$

(Final map sensitivity)

Experiment	Final map sensitivity (µK/degree)		
COBE	~190		
WMAP @ 94 GHz (DR5)	4.3		
Planck @ 143 GHz (DR1)	0.46		
BICEP2 @ 150 GHz	0.087		

- → Accurate control of **systematics** is mandatory
 - Beam (cross-polar, asymmetries, sidelobes)
 - Instrumental polarization
 - Pointing accuracy
 - Relative calibration (spectral responses)

All these effects can lead to $T \rightarrow B \text{ or } E \rightarrow B \text{ leakage}$

• RFI

Observations

BICEP2 results . Othe

Other experiments

QUIJOTE Conclusions

Observability of B-modes

- ➡ Foregrounds. B-mode signal is subdominant over Galactic foregrounds
 - Free-free, low-freq, not polarized
 - Synchrotron, low-freq, pol ~10%
 - Thermal dust, high-freq, pol ~10%
 - Anomalous emission, 20-60 GHz, <1% (?)
 - Point sources, low-freq, pol ~5-10%

 Systematic program to study polarized astrophysical foreground signals is needed (see NASA-NSF report "Task Force on CMB research" and ESA-ESO report on "Fundamental cosmology")

Stacked I and Q maps around hot and cold spots. Detection of the signal from adiabatic scalar fluctuations from inflation (CPP1, arXiv:1303.5062):

First (indirect) detection of BB signal from lensing! (Hanson et al. 2013, arXiv: 1307.5830). 22 July 2013

 \bullet 95 and 150 GHz observations over 100 deg^2

• Indirect detection by cross-correlating SPTpol maps of the B-mode signal with templates tracing the lensing potential built from the E-mode signal measured by SPT pol and maps of the CIB from Herschel

• This gives a 7.70 correlation

Observations

BICEP2 results

Other experiments

QUIJOTE Conclusions

Polarbear results

 $A_{\rm BB}$ = 1.12±0.61 (1.8 σ detection)

• Detection of CMB polarization lensing through correlation with CIB, at 2.30 (arxiv:1312.6645). 23 December 2013

•First direct detection of BB signal from lensing! (Polarbear collaboration 2014, arXiv: 1403.2369). 10 March 2013

• Results based on observations of 30 deg^2 at 150 GHz with 3.5' angular resolution

BICEP2 results

Other experiments i QUIJOTE Conclusions

BICEP2 I: DETECTION OF B-mode POLARIZATION AT DEGREE ANGULAR SCALES

BICEP2 COLLABORATION - P. A. R. ADE¹, R. W. AIKIN², D. BARKATS³, S. J. BENTON⁴, C. A. BISCHOFF⁵, J. J. BOCK^{2,6}, J. A. BREVIK², I. BUDER⁵, E. BULLOCK⁷, C. D. DOWELL⁶, L. DUBAND⁸, J. P. FILIPPINI², S. FLIESCHER⁹, S. R. GOLWALA², M. HALPERN¹⁰, M. HASSELFIELD¹⁰, S. R. HILDEBRANDT^{2,6}, G. C. HILTON¹¹, V. V. HRISTOV², K. D. IRWIN^{12,13,11}, K. S. KARKARE⁵, J. P. KAUFMAN¹⁴, B. G. KEATING¹⁴, S. A. KERNASOVSKIY¹², J. M. KOVAC^{5,16}, C. L. KUO^{12,13}, E. M. LEITCH¹⁵, M. LUEKER², P. MASON², C. B. NETTERFIELD⁴, H. T. NGUYEN⁶, R. O'BRIENT⁶, R. W. OGBURN IV^{12,13}, A. ORLANDO¹⁴, C. PRYKE^{9,7,16}, C. D. REINTSEMA¹¹, S. RICHTER⁵, R. SCHWARZ⁹, C. D. SHEEHY^{9,15}, Z. K. STANISZEWSKI^{2,6}, R. V. SUDIWALA¹, G. P. TEPLY², J. E. TOLAN¹², A. D. TURNER⁶, A. G. VIEREGG^{5,15}, C. L. WONG⁵, AND K. W. YOON^{12,13}

 CMB polarization
 Observations
 BICEP2 results
 Other experiments
 QUIJOTE
 Conclusions

TQU maps

 $\mathbf{r} = \mathbf{0.20^{+0.07}}_{-0.05}$

BICEP2 results

Other experiments

QUIJOTE 📜 Conclusions

Assessment of foreground contamination

- Thermal dust:
 - Use various models:
 - BSS, LSA Two models of the Galactic magnetic field (O'Dea et al. 2012)
 - FDS, assuming P/I=5%, and Q=U
 - PSM with P/I=15%
 - DDM1, with P/I=5%, and DDM2 using a digitized map of P/I and ψ from a Planck talk

Claim: residuals at r = 0.02

BICEP2 results

Other experiments

QUIJOTE Conclusions

Assessment of foreground contamination

- Thermal dust:
 - Use various models:
 - BSS, LSA Two models of the Galactic magnetic field (O'Dea et al. 2012)
 - FDS, assuming P/I=5%, and Q=U
 - PSM with P/I=15%
 - DDM1, with P/I=5%, and DDM2 using a digitized map of P/I and ψ from a Planck talk

Claim: residuals at r = 0.02

0.02lens+r=0.2 BSS LSA 0.015 FDS PSM DDM1 ו(ו+1)C<mark>^{BB}/2יי [µK²]</mark> DDM2 0.01 0.005 -0.00550 100 150 200 250 300 0 Multipole

- Synchrotron:
 - Extrapolate from WMAP 23 GHz assuming β =-3.3
 - Below *r* = 0.003

Point sources:

- 143 GHz fluxes from the Planck catalogue together with polarization information from ATCA
- Contribution of $r \approx 0.001$

Observations

BICEP2 results

Other experiments

QUIJOTE 🧮 Conclusions

Implications

* The value r=0.20 implies an energy scale for inflation higher than 10^{16} GeV. This is comparable to GUT scale

However, there is some tension between BICEP2 and previous constraints from Planck TT, r < 0.11 (95% CL, Planck collaboration XVI (2013)

 This tension might indicate the existence of additional parameters describing the perturbation spectrum created during inflation

Observations

BICEP2 results

Other experiments

QUIJOTE 🧮 Conclusions

Implications

* The value r=0.20 implies an energy scale for inflation higher than 10^{16} GeV. This is comparable to GUT scale

However, there is some tension between BICEP2 and previous constraints from Planck TT, r < 0.11 (95% CL, Planck collaboration XVI (2013)

 This tension might indicate the existence of additional parameters describing the perturbation spectrum created during inflation

A running of the spectral index relaxes the constraints from Planck (r<0.26 - Planck collaboration XVI)

Other possibilities:

• Blue tilt of the tensor spectrum (*n*_t>0, Cheng et al. 2014)

- Extra sterile neutrino species (Zhang et al. 2014, Dvorkin et al. 2014)
- Primordial magnetic fields (Bonvin et al. 2014)
- r spatial modulation (Chluba et al. 2014)

✤ Specially after the Planck collaboration put in the arXiv four PIPs describing the polarized dust properties (in regions not covering BICEP2 footprint), rumors have spread (blogs, facebook thread, newscientist, science,...) about a potentially significant polarized dust contamination affecting the BICEP2 measurement

These Planck papers have highlighted the difficulty of estimating the amount of dust polarization in low-intensity regions

✤ Specially after the Planck collaboration put in the arXiv four PIPs describing the polarized dust properties (in regions not covering BICEP2 footprint), rumors have spread (blogs, facebook thread, newscientist, science,...) about a potentially significant polarized dust contamination affecting the BICEP2 measurement

These Planck papers have highlighted the difficulty of estimating the amount of dust polarization in low-intensity regions

Strong criticism about the use by the BICEP2 team of an apparently digitized image of a Planck map of the dust polarization at 353 GHz, taken from a slide from the ESLAB conference (J,-Ph. Bernard's talk)

Also, they seem to have
 ignored the non-subtraction of
 the CIB in this map

Mortonson & Seljak, arXiv:1405.5857 (22 May)

✤ Planck + BICEP2 analysis including a polarized dust component, with free amplitude and a fixed power-low power spectrum ($C_l^{dust} \propto l^{-2.3}$)

The resulting joint BICEP2+Planck analysis slightly favours solutions without gravitational waves (only dust and B-mode lensing), with r<0.11</p>

* "This result does not automatically mean that BICEP2 has no evidence for primordial gravitational waves. It does, however, mean that the case strongly relies on understanding the actual dust polarization contribution in the BICEP2 field, which at the moment is unavailable and possibly higher than the various estimates presented by the BICEP2 team. It is thus too early to celebrate the BICEP2 results as a definitive proof of inflation"

QUIJOTE

Flauger, Hill & Spergel, arXiv:1405.7351 (28 May)

Used more refined dust models than BICEP2, and re-analized the 100×150 GHz and the 150×150 GHz correlations

✤ Reached similar conclusions to Mortonson & Seljak (2014): BICEP2 data consistent with a cosmology with r=0.2 and negligible foregrounds, but also with r=0 and significant dust polarization signal

The expected amplitude of dust polarization remains uncertain by a factor of three

i Conclusions

Used more refined dust models than BICEP2, and re-analized the 100×150 GHz and the 150×150 GHz correlations

✤ Reached similar conclusions to Mortonson & Seljak (2014): BICEP2 data consistent with a cosmology with r=0.2 and negligible foregrounds, but also with r=0 and significant dust polarization signal

The expected amplitude of dust polarization remains uncertain by a factor of three

Definitely **need to wait for Planck polarization data** (october 2014) to determine the true level of dust polarization at 150 GHz, and for results of **independent B-mode experiments**

 CMB polarization
 Observations
 BICEP2 results
 Other experiments
 QUIJOTE
 Conclusions

CMB polarization experiments

Name	Platform	Area [deg²]	FWHM	Freq [GHz]	Detectors	r _{lim}	Starts
BICEP	Ground	800	~1°	100,150	PSB bolom.	0.1	2010
QUIET-II	Ground	1600	4'-30'	40, 90	MMIC HEMT	0.01	2010
QUIJOTE	Ground	5000	~1°	10-40	MMIC HEMT	0.05	2012
PolarBear	Ground	1200	3'-7'	90,150, 220	TES bolom	0.01	2012
QUBIC	Ground	800	~1°	90,150,220	Bol interf	0.01	2014
ACTPol	Ground	4000	~1'	150,218,277	Bolometer	0.03?	2013
SPTPol	Ground	500	1'-1.6'	100,150,220	TES Bolom.	0.03	2013
EBEX	Balloon	350	8'	150,250,350,450	TES bolom	0.03	2012
SPIDER	Balloon	24000	17'-50'	90,145,280	TES bolom	0.03	2013
LSPE	Balloon	9500	30'	40-250GHz	Bolo+HEMTs	0.03	2015
Planck	Satellite	Full sky	5'-33'	30-353	MMIC/Bol	0.05	2009
LiteBIRD	Satellite	Full sky	30'	50-270	TES bol	0.001	2020
PIXIE	Satellite	Full sky	1.6°	30-6000	Bolometers	0.001	2018 ?
PRISM	Satellite	Full sky	17'-5"	30-6000	Bolometers	0.0005	2028 ?
EPIC/ CMBPol	Satellite	Full sky	~10'	30-300	Bolometers	0.001	2025 ?

BICEP2 results Other experiments

Conclusions

QUIJOTE

The QUIJOTE collaboration

★ Instituto de Astrofísica de Canarias (IAC)

R. Rebolo (PI), J.A. Rubiño-Martín (PS), M. Aguiar, R. Génova-Santos, F. Gómez-Reñasco, C. Gutiérrez, R. Hoyland (InstS), C.H. López-Caraballo, A. Peláez, A. Pérez (PM), V. Sánchez, D. Tramonte, A. Vega, T. Viera, R. Vignaga

★ Instituto de Física de Cantabria

E. Martínez-González, B. Barreiro, F.J. Casas, J.M. Diego, R.

Fernández-Cobos, D. Herranz, M. López-Caniego, D. Ortiz, P. Vielva

★ DICOM - Universidad de Cantabria

E. Artal, B. Aja, J. Cagigas, J.L. Cano, L. de la Fuente, A. Mediavilla, J.P. Pascual, J.V. Terán, E. Villa

★ JBO - University of Manchester

- L. Piccirillo, R. Battye, E. Blackhurst, M. Brown, R.D. Davies, R.J. Davis,
 - C. Dickinson, K. Grainge, S. Harper, B. Maffei, M. McCulloch, S. Melhuish, G. Pisano, R.A. Watson

***** University of Cambridge

M.P. Hobson, A. Challinor, A.N. Lasenby, N. Razhavi, R.D.E. Saunders, P.F. Scott, D. Titterington

J. Ariño, B. Etxeita, A. Gómez, C. Gómez, G. Murga, J. Pan, R. Sanquirce, A. Vizcargüenaga

CMB polarization Observations BICEP2 results Other experiments

QUIJOTE

Conclusior

★ <u>Goals</u>:

- To obtain six polarization maps in the frequency range 10-40 GHz with sufficient sensitivity to correct foreground emission (synchrotron and AME) and constrain the imprint of **B-modes down to** r=0.05
- ★ <u>Site</u>: Teide Observatory (altitude: 2400 m, latitude: 28°), Spain
- ★ Observability: -32° <Dec.<88° (f_{sky} ~0.65)
- **★** Frequencies: 11,13, 17, 19, 30 and 40 GHz
- ★ <u>Angular resolution</u>: 1 degree (52 arcmin @ 11 GHz)
- ★ <u>Telescope and instruments</u>:
 - Phase I:
 - First Telescope (**QT1**)
 - Equipped with a Multifrequency Instrument (MFI) with 4 polarimeters @ 10-20 GHz. Started operations Nov. 2012
 - Second Instrument (TGI) with 31 polarimeters @ 30 GHz. Funded; to start operations by the end of 2014
 - Polarized Source Subtractor
 - Phase II:
 - Second Telescope (QT2). Under construction (mid of 2014)
 - FGI with 40 polarimeters @ 40 GHz. Funded (2015)
- ★ Scientific operation plan: 2012-2020

Observations

BICEP2 results

Science with the MFI

★ These maps will provide valuable information about the polarization properties of:

• <u>Synchrotron emission</u>: should dominate the emission at the MFI frequencies. WMAP 23 GHz shows it to be polarized at ~5-15%, depending on the Galactic latitude

Other experiments

OUIJOTE

Conclusion

• <u>Anomalous microwave emission</u>: little known about its polarization. Best upper limits on the polarization fraction: <1% (López-Caraballo et al. 2011, Dickinson et al. 2011)

 \star MFI maps will be used to clean the 30 GHz and 40 GHz maps of the second (TGI) and third (FGI) QUIJOTE instruments

★ Excellent complement of Planck at low frequencies. Planck will provide information about the polarization of the thermal dust emission at high frequencies (October 2014)

Science with the TGI and FGI

Observations

CMB polarization

BICEP2 results

OUIJOTE

Conclusions

Other experiments

★ Left: example of the QUIJOTE-CMB scientific goal after the Phase I. It is shown the case for 1 year (effective) observing time with the TGI, and a sky coverage of $3,000 \text{ deg}^2$. The red line corresponds to the primordial B-mode contribution in the case of $\mathbf{r} = 0.1$

★ Right: QUIJOTE-CMB Phase II. Here we consider 3 years of effective operations with the TGI, and that during the last 2 years, the FGI will be also operative. The red line now corresponds to r = 0.05

Observations

BICEP2 results Other experiments

Conclusio

OUIJOTE

MFI observations status

Commissioning phase (November 2012 - March 2013)

- Calibrators (>100 hrs observing CRAB, CASS-A, Moon, Jupiter)
- Polarization tests
- Local interference map (~10 hrs)
- Tsys calibration (~10hrs)
- Science demonstration cases:
 - Cygnus loop (~1hr)
 - Fan region (> 135 hrs)
 - Perseus molecular cloud (>125hrs)

Science phase

(April 2013 - now)

- Wide survey (3000h; will repeat this)
- Cosmological fields (1400h)
- Daily calibrators (Crab, Cas A, Jupiter, sky dips)
- 3C58 in the Fan region (25h)
- Galactic Haze (200h)
- Perseus molecular cloud
- Some faint point sources (3C273, NGC7027,..)

Observing efficiency ~ 70% (including bad weather & technical problems).

- ★ Large observation program (~132 hours, 12/2012 to 04/2013), on an area covering ~200 deg² around the Perseus molecular complex. One of the brightest AME regions on the sky (Watson et al. 2005, Planck collaboration 2011)
- \star Also covering the California nebula (HII region null polarization control region)
- **\star** Final integration time of ~ 3300 s/beam, yielding a sensitivity of ~ 30 mJy/beam in Q and U

Quijote 11 GHz

AME constraints (preliminary)

Galactic Haze

★ Large observation program still ongoing (~200 hours, from June until now), on an area covering ~1000 deg² around the Galactic centre

 \star The goal is to study the polarization of the Galactic Haze emission

★ Preliminary 11 and 13 GHz maps ($20\times 6 \text{ deg}^2$) of the Galactic plane around the Galactic centre, in comparison with WMAP 23 GHz

QUIJOTE

Conclusions

★ Quijote maps trace the large-scale polarized emission, but fails to detect polarized emission from Sgr-A (possible Faraday depolarization?)

★ 3000h of a large region of ~20,000 deg² of the north sky to study diffuse foreground emission
 ★ Conducted between April and June 2013 and 2014 (64 days of continuous observations each year). Will repeat the same survey, starting next month

★ Resulting map from 700 hours:

★ 3000h of a large region of ~20,000 deg² of the north sky to study diffuse foreground emission
 ★ Conducted between April and June 2013 and 2014 (64 days of continuous observations each year). Will repeat the same survey, starting next month

★ Resulting map from 700 hours:

\star Blow-up of the Galactic plane:

 CMB polarization
 Observations
 BICEP2 results
 Other experiments
 QUIJOTE
 Conclusions

* The study of the polarization of the CMB opens a new window to study tensor (gravitational waves) perturbations from the inflationary epoch only 10⁻³⁶s after the Big Bang

* BICEP2 have recently claimed a detection of primordial B-modes in the polarization pattern of the CMB, which would have been imprinted by the Gravitational Wave Background

* The inferred value of the tensor-to-scalar ratio, r=0.20, is in tension with previous measurements from Planck (r < 0.11). This tension can however be relieved by the inclusion of extra parameters, which are not always compatible with standard inflationary models

* Some skepticism has recently spread about the possible dust contamination in this measurement. It seems that the confirmation of this signal needs to wait until a better characterization of the dust polarization is provided by Planck

* Equally important is to get data from independent experiments at different frequencies and, if possible, at more than one individual frequency. This is likely to be the only way to disentangle the cosmological and the foreground signal

* QUIJOTE will provide this (and is the only current experiment capable to measure the synchrotron polarization), at a completely different frequency range. One year of observations with the TGI should allow to reach a sensitivity r=0.1