Modeling Galaxy Surveys with N-body Simulations

Pablo Fosalba ICE, IEEC-CSIC

Why do we need Nbody simulations ?

- Unique tool to model evolution of the universe into the Non-Linear regime (check validity of analytic theory, construct NL prediction codes "Emulators")
- Build "Synthetic" Universes

(input for DM halos, populate them with galaxies, apply survey mask,..)

 Develop reduction and analysis pipelines (mimic complexity of real data, extract science)

Building mock galaxy catalogs

Building mock galaxy catalogs

Building mock galaxy catalogs

Euerteventura lune

Fuerteventura June 5, 2014

Predictions from Simulations

(non-comprehensive list)

- Distribution of matter on large and small scales
- Abundance of collapsed objects (as function of t and M)
- Clustering of halos
- Halo profiles
- Baryon Acoustic Oscillations (BAO)
- Gravitational Lensing statistics (Galaxies and CMB)
- Integrated Sachs-Wolfe effect
- ≻ ...

"Systematic" error in these predictions has to be kept subdominant wrt expected accuracies from Galaxy Surveys

N-body Algorithms/Simulation Codes

- Start from small initial fluctuations in an expanding universe
- Gravity (Newtonian) only force on large + DM is collisionless
- Self-gravitating fluid: discretize equations into N-body system

Exact solution: N^2 problem (N<10⁶) Approximate solvers (N > 10⁶):

✓ Large scales only: "Particle Mesh" (FFT based)

 Split force computation into large + small scales: "Tree" methods (Gadget, PKDGRAV codes), or "Adaptive" mesh methods (RAMSES, CUBEP³M codes)

reduce to O(N logN) + codes fully parallel

Where do we stand ? What is the next frontier ?

State of the art in Nbody simulations

State of the art in Nbody simulations

Number of particles Current simulations can model 10⁹ 109 MilkyWay like galaxies ($10^{10} L_{\odot}$) Mr = -18over large volumes 1010 -201010 h^{-1} MXXL: Angulo et al. MICE -GC $\sim M_{\odot}$ 21 \odot Horizon Sim: Teyssier et al. Jubile MICE: Fosalba et al. 1011 L_{\min} HR2 ${\rm M}_{{\rm part}/{}}$ HR1,2,3: Kim et al. MICE HR3 **DEUSS:** Alimi et al. HR1 Jubilee: Watson et al. Stage III (DES/BOSS/PAU) DEUSS simulation Faintest mock galaxy (L_{min}) MICE-SHV hosted by 100-particle 10^{11} halo... 10¹³ Euul 1 1 1 1 1 1 1 1 10² 10³ 10 10^{4} Volume [(Gpc/h)³]

Fuerteventura June 5, 2014

Results from state-of-the-art (STAGE III) Survey Simulations

Millennium-XXL

Largest high-resolution N-body simulation

303 billion particles

L = 3 Gpc/h

- ~700 million halos at z=0
- ~25 billion (sub)halos in mergers trees

 $m_p = 6.1 \text{ x } 10^9 \text{ M}_{\odot}/\text{h}$

12288 cores, 30 TB RAM on Supercomputer JuRoPa in Juelich

2.7 million CPU-hours

Millennium-XXL

Largest high-resolution N-body simulation

303 billion particles

L = 3 Gpc/h

Leibniz-Institut für Astrophysik Potsdam

PARTNERSHIP FOR Advanced Computing IN Europe

The Big-MULTIDARK Simulation Suite

PRACE proposal 2012: G. Yepes (PI), F. Prada, S. Gottloeber, A. Klypin, S. Hess 22.5 million cpu hours in SuperMUC@ LRZ.

DATABASES http://www.multidark.org BigMD products Publicly available soon

BigMD suite:

Volume: 2.5/h Gpc volume. N particles: 3840^3 particles Force Resolution: 10 kpc/h N timesteps > 6000 (max $\Delta t < 0.001$) Cosmological Parameters:

> $Ω_{M}$ =0.27, 0.29, 0.31 $σ_{8}$ = 0.82, 0.9 n_{s} = 0.95 zinit= 100

First Planck Cosmology runs:

 $\Omega_{\rm M}$ =0.3071, σ_8 = 0.8228, n_s=0.96 Zinit=100

Multidark & Small MD Planck1

Box = 1/h Gpc and 400/h Mpc@ 3840^3 Force = 5 kpc/h – 3kpc Zinit=120-150 88 timesteps stored in each run FOF and BDM halos. Light Cones

New Mass function calibration

credit: G.Yepes

MNRAS, (2013), 433, 1230.

The halo mass function through the cosmic ages

arXiv:1212.0095

William A. Watson^{1*}, Ilian T. Iliev¹, Anson D'Aloisio², Alexander Knebe³, Paul R. Shapiro² and Gustavo Yepes³

¹ Astronomy Centre, Department of Physics & Astronomy, Pevensey II Building, University of Sussex, Falmer, Brighton, BNI 9QH, United Kingdom ² Department of Astronomy and Texas Cosmology Center, University of Texas, Austin, TX 78712, USA

Department of Astronomy and reads cosmology center, Onversity of reads, Astron, A. 1011, OOT,

_____ 10 AHF 1 -2_____ 0.1-4FOF -2-6-4 $\ln f(\sigma)$ -8-6 $\ln f(\sigma)$ $---- 6h^{-1}$ Gpc z = 0.1 -10 $3.2h^{-1}$ Gpc z = 0,1,3 --- $1h^{-1}$ Gpc z = 0,1,3,6,8 $6h^{-1}$ Gpc z = 0.1 -10-12 $-3.2h^{-1}$ Gpc z = 0,1,3 $425h^{-1}$ Mpc z = 3,6,8,10 $-1h^{-1}$ Gpc z = 0,1,3,6,8 $114h^{-1}$ Mpc z = 6,8,10,15 -12 $425h^{-1}$ Mpc z = 3,6,8,10 -14 $---- 20h^{-1} Mpc z = 8.10$ $114h^{-1}$ Mpc z = 6,8,10,15 --- 11.4 h^{-1} Mpc z = 8,10,15,20,26 -14 $20h^{-1}$ Mpc z = 8.10.15.20.26 -16--- 11.4 h^{-1} Mpc z = 8,10,15,20,26 -16_____ -0.50.51.5-11 -0.50.51.51 -1 $\ln(\sigma^{-1})$ $\ln(\sigma^{-1})$

The Jubilee Simulation

Cross-correlation between ISW and LRGs

US

212 Count

http://jubilee-project.org

credit: G.Yepes

Marenostrum Institut de Ciències de l'Espai Simulations P.Fosalba Cosmological Simulations @ Marenostrum Supercomputer and the MICE using 4000 processors Collaboration: M.Crocce M.Manera **F.Castander** D.Reed E.Gaztanaga C.Bonnett **J.Carretero** K.Hoffman www.ice.cat/mice BSC - CNSCF Tier **1000 Million Light Years** Copyright 2013. Barcelona Supercomputing Center - BSC

MICE-Grand Challenge simulation

Developed at Marenostrum @ BSC, used Gadget2, 4100 cores, 3 M-hours 70 billion particles in a 3 Gpc/h box (50 kpc/h soft length) Samples 5 decades in dynamic range

MICE-GC: Dark-Matter clustering

Fosalba et al. 2013, arXiv: 1312.1707

MICE-GC: Lensing observables

"The onion universe: all sky light-cone simulations in spherical shells" Fosalba et al., MNRAS, **391**, 435 (2008)

- 1. Divide 3D Lightcone data into redshift shells.
- 2. Project DM particle counts onto (Healpix) pixelized 2D maps
- 3. Add shells with WL kernel/weight

For the convergence/kappa:

$$egin{aligned} &\kappa(heta) = rac{3H_0^2\Omega_m}{2c^2} \int dr \; \delta(r, heta) rac{(r_s-r)r}{r_s \; a} \ &\kappa(i) = rac{3H_0^2\Omega_m}{2c^2} \sum_j \delta(i,j) \; rac{(r_s-r_j)r_j}{r_s a_j} \; dr_j \end{aligned}$$

- Valid in the Born approximation (ie, linear/uncorrelated deflections) 1% accurate at arcmin scale
- Use simple relations in harmonic space to model other lensing observables

van Waerbeke & Mellier 2003

MICE-GC: Lensing statistics

all-sky maps of convergence, shear and magnification with < 1 arcmin resolution

Fosalba et al. 2013, arXiv:1312.2947

MICE-GC simulation papers/data

Paper I: Dark-matter clustering [Fosalba et al. 2013a, arXiv:1312.1707]Paper II: Halo and galaxy clustering [Crocce et al. 2013, arXiv:1312.2013]Paper III: Galaxy lensing mocks [Fosalba et al. 2013b, arXiv:1312.2947]

MICE data publicly available at CosmoHub portal: http://cosmohub.pic.es

Register (10 secs)
Start downloading data
SQL queries to DB

Massive storage and database access of simulated and observed cosmological data. Port d'Informació Científica: www.pic.es

Towards STAGE IV Survey Simulations

Simulations of Non-standard models

Status: 2012

[source: Marco Baldi]

- 1. Quintessence and Early DE
- 2. Inhomogeneous large-voids (LTB)
- 3. WDM
- 4. NG initial conditions
- 5. Massive neutrinos
- 6. Self-interacting DM
- 7. Linear spatial DE fluctuations
- 8. Non-linear spatial DE fluctuations (MG)
- Nbody codes already developed
- Partially developed
- Mostly TB developed

Simulations of Non-standard models

Status: 2014

- 1. Quintessence and Early DE
- 2. Inhomogeneous large-voids (LTB)
- 3. WDM
- 4. NG initial conditions
- 5. Massive neutrinos
- 6. Self-interacting DM
- 7. Linear spatial DE fluctuations
- 8. Non-linear spatial DE fluctuations (MG)
- Nbody codes already developed
- Partially developed
- Mostly TB developed

complexity

Heitmann et al. The Outer Rim Simulation

@ Argonne

- Simulation parameters: 4.225 Gpc (3Gpc/h), 1.1 trillion particles, ~ $10^9 M_{\odot}$ (WMAP-7)
- Running on Mira (Argonne BG/Q), reached z~0.4, 100 snapshots starting at z~10, halo catalogs generated
- Results used for creating 8 DESI mocks containing 8M LRGs, 40M ELGs, 3M QSOs, available on NERSC repository (mocks created by Martin White)

Fuerteventura June 5, 2014

f(sigma)

BIG DATA

State-of-the art simulations (MXXL, Horizon, MICE, DEUS...): DM snapshot ~ 2 TB DM 3D Lightcone ~ 20 TB (up to z=2)

STAGE IV survey simulation is ~100 times larger... Looking for PetaBytes of data per run

- Requires HPC facilities for simulation development, storage Nbody codes will need to be upgraded
 - Analysis codes will need to be upgraded + work on the fly to avoid massive data storage and post-processing

We need large HPC access and people to develop this in next few years!!

Summary

- Percent accuracy in NL predictions (k>1 h/Mpc) from Nbody simulations/ Emulators has not yet been achieved (but we are close...)
- Huge challenges ahead: next frontier galaxy surveys demand modeling larger volumes with increasing resolution
- Good News: Few trillion particle simulations feasible within next 2 years
- Simulation and analysis codes to be upgraded to exascale (need HPC experts!)
- Coordinated access to HPC infrastructures is key to successful development plan
- New tools for Science exploitation: analysis increasingly based on efficient access to Simulated data Databases