
Inflation 
 
 

Jose J. Blanco-Pillado 



IKERBASQUE!
&!

UPV/EHU!



2 

The basics of  Inflation 
 

•  Inflation was proposed to address several problems of the 
conventional Big Bang theory: 

•  The horizon problem. 
 

•  The flatness problem. 
 

•  The monopole problem. 
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The basics of  Inflation 
 

•  A period of accelerated expansion solves all these problems. 

•  One way to do that is to have a period of time where the 
energy density of the universe is dominated by an effective 
cosmological constant. 

 
 

•  The universe increases its size by a huge factor in a tiny 
amount of time:  
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•  The simplest model where we can explain inflation is a 
scalar field theory coupled to gravity 
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The basics of  Inflation 
 

Inflation has to end to give 
rise to a radiation dominated 
universe. 

We measure the amount of 
inflation in terms of the total 
expansion during that time, 
the number of e-folds: 
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The Slow Roll Regime 
 

•  Inflation has to be sustained for a while so we need to ensure that 
the field behaves effectively like a cosmological constant. 

•  This is true if the field in the slow roll regime where one requires 
the following parameters to be small: 
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restrictions in the form of the 
potential. 
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Simplest Example 
 

•  The simplest model we can think of is chaotic inflation 
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Linde ‘83. 
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Simplest Example 
 

•  On the other hand, the number of e-folds in this model is given by: 

So, in order to solve the Big 
Bang problems we need: 
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•  This means that the mass has to be small compared to Planck mass. 
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Information from the background 
 

•  The inflationary period has to last for 60 e-folds. 

•  Scale of inflation must be above TeV. 

•  Many questions open up: 

•  What is the shape of the potential? Is it fine tuned? 

•  What is the microphysical origin of this scalar field? 

•  What is the energy scale of inflation? 

•  What are its interactions? 
 
•  How does one enter the inflationary period? 
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Perturbations 
 

•  The most important aspect of inflation is not the background, but 
the fact that it gives us a causal mechanism to generate the 
primordial fluctuations.  
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Perturbations 
 

•  Inflation produces two different types of perturbations: 

•  Scalar perturbations. 

•  Tensor perturbations. 
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Perturbations in slow roll language 
 

•  The power spectrum are normally parametrized in the following 
way: 

•  Scalar perturbations. 

•  Tensor perturbations. 
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Types of  inflationary potentials 
 

•  There is a way to clasify the types of potentials: 

•  Small field inflation. 

•  Large field inflation. 
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Lyth bound 
 

•  There is a simple relation between the field range travelled by the 
inflaton and tensor to scalar ratio. 
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Lyth bound 
 

•  Observing gravity waves tells us something about the scale of 
inflation and the type of potential. 

•  and a consistency condition, 
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Types of  inflationary potentials 
 

•  There are many other ways to have inflation where the 
potentials are much more complicated: 

•  Multiple fields. 

•  Non canonical kinetic terms. 

•  Features on the potential. Steps, curves, etc… 
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Planck results 
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The most famous CMB plot 
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Planck Results 
 

•  Analysing the data from Planck we see: 
 

•  The universe is almost perfectly flat. 

•  The scalar perturbations are adiabatic.  
    (No evidence for isocuvature). 

•  Nearly scale invariant. 

•  Nearly perfectly Gaussian. 
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Planck Results 
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Planck Results 
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Planck data suggests that this 
type of small field inflation is 
more likely. 
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Is there something else ? 
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Hints at large scales ? 
 

•  There seem to be a number of intriguing facts about the power 
spectrum at low l, large scales. 

 
•  Nothing too significant, but nevertheless worth looking at carefully. 
 

 - It seems to be a consistent lack of power at large scales, small l. 
 

 - Alignment of low multiples. 
 

 - Power asymmetry . 

Could this be a hint of  something interesting? 
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Power Supression at low l 
 

•  Remember that large scales are the first ones to leave the horizon 
during inflation. 

 

 
 
•  We may be seeing the effects of the onset of inflation. 

•  For this we need to be lucky, only around 60 e-folds. 
 
•  The field may be rolling faster during the first few e-folds. 
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Seeing the an anisotropic stage 
 

•  The same argument applies to isotropy. 

•  We know the universe is isotropic at late times, but it could have 
been very anisotropic at the begining of inflation. 

•  Does this leave an imprint in the low-l power spectrum? 

•  This happens fast unless there is an anisotropic stress component 
during inflation. 

•  There could be a way to see both these effects in one single model. 

J.J.B.-P. and M. Minamitsuji in preparation. 
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BICEP2 Result 
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Tension between Planck and Bicep2 ? 
 

•  If this is real it would create more tension at low-l. 

•  Planck 

 
•  BICEP2 

r < 0.1

r = 0.2
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Fundamental implications of  BICEP2 
 

•  Taking the value of BICEP2, we get that the inflaton field 
has to cover a transplanckian distance: 

 

•  How can we make sure that the potential stays flat for all 
this path. 

•  We will have unsupressed corrections to the potential of 
the form: 
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Fundamental implications of  BICEP2 
 

•  This fine tuning is also necessary in the case of small field but 
now is much more severe. 

•  As an example, lets look at a term like, 

 
•  In other words we have to impose that 

•  And not of the order of the cutoff of the theory. 
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Good models of  large r ? 
 

•  The best option seems to be to make use of a symmetry 
that prevents these corrections to appear. 

•  Axion field with a shift symmetry of the form 

•  Non-perturbative corrections can induce a potential of the 
form: 
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Natural Inflation 
 

•  In order to make this model agree with BICEP2 we need the 
parameter  

•  This is a challenge for models of fundamental physics and string 
theory. 

•  There are several ways around this… 

•  N-flation (Assisted inflation many fields around the minimum ) 
•  Extending the range of field space (monodromy inflation, axion 

alignement…) 
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Looking ahead 
 

•  Would BICEP2 results hold? 

•  If they here to stay, it means very strong evidence of 
inflation. 

•  We need to think hard about the inflaton potential and 
its origin. 

•  Opportunity to learn something about its origin in 
connection to particle physics. 

•  Can we measure the gravitational wave tilt? 
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Open issues 
 

•  How did inflation started? 

•  Initial conditions, how did we get to the right place in the 
potential? 

•  Is our vacuum the only one in the theory? 

•  Can we embed inflation in string theory? 
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Inflation in the Landscape 
 

•  In a theory with many vacua we could have a much more 
complicated structure at the largest possible scales. 

•  Inflation happens when the field gets stack in one of these 
vacua. 

•  On the other hand this type of inflation is not slow roll 
inflation and it will end by bubble nucleation to the vicinity 
of our vacuum. 

 

Taken from Garriga ‘13. 
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Inflation in the Landscape 
 

 
Garriga ‘13. 



Inflation in the Landscape 
 

•  Can we have any observational evidence 
 for this? 
 
 
Maybe (IF there is not too much inflation inside the bubble) 
 

 - The universe created this way is an open universe. 
 
 
 
 

 - Maybe there something special at low-l due to the initial 
 rolling of the field. 

 
 - Bubble collisions.  

 
 
 

Bousso, Harlow and Senatore ‘13. 

Bucher and Turok ’95 

Garriga, Montes, Sasaki and Tanaka 

Many others…  

Kleban et al; Johnson et al.; Aguirre et al. 
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Conclusions  
 

I am sure I will not get here with any time left… 


