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Brown dwarf and low-mass star
formation by disc fragmentation

-

» The theory of gravoturbulent collapse (1 core=»1 star) of
molecular clouds (e.g. Chabrier) has two major drawbacks in
the low-mass regime

(1) difficult to explain the formation of low-mass binaries
(e.g. see poster by Reggiani)

(1) gravitationally bound brown dwarf-mass cores have not
been observed

= Other theories are needed for the formation of low-mass stars

and brown dwarfs: ejection of protostellar embryos (Clarke et
al. 2003, Bate et al. 2003), disc fragmentation (Bate et al. 2003,

Stamatellos et al. 2007)
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Brown dwarf and low-mass star
formation by disc fragmentation

* The shape the low-mass end of the IMF

" The brown dwartf desert
" The binary statistics of brown dwarfs

* The formation of planetary-mass free-floating objects

Stamatellos & Whitworth 2009, MNRAS



The low-mass IMF

AN/AM~M-

: an ensemble of 12 | C e =0 6+
Brown simulations producing 7 Pleiades: 0=0.6+0.11
dwarfs 96 stars in total (Moraux et al. 2003)

5 ¢ Orionis: 0:=0.6:0.20

Low-mass stars (Caballero et al. 2007)

This is not an IME
It represents the mass
spectrum of only one
formation mechanism
(for one set of initial
conditions).
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Stamatellos & Whitworth 2009, MNRAS
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* The shape the low-mass end of the IMF

" The brown dwartf desert
" The binary statistics of brown dwarfs

" The formation of free-floating planetary-mass objects

Stamatellos & Whitworth 2009, MNRAS



The brown dwarf desert
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Radiative feedback suppresses the formation

of low-mass stars and brown dwarfs

i

Bate et al. 2003
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Radiative feedback suppresses the formation
of low-mass stars and brown dwarfs

-

Bate 2009




Radiative feedback suppresses the formation
of low-mass stars and brown dwarfs

-
Bate 2009 vs Bate et al. 2003

Calculation Initial gas Initial  Accretion No. stars No. brown
mass radius radii formed dwarfs formed
(M@) (pc) (au)

BBB2003 50.0 0.188 5
BBB2003 RT5 5
BBB2003 RTO.5 0.5

BB2005 50. : 5
BB2005 RTO.5 0.5

Most of the radiative feedback from protostars is ignored
but its effect is already dramatic !




Radiative feedback suppresses the formation
of low-mass stars and brown dwarfs

= Offner et al. 2009: Full radiative feedback is included

Non-Radiative
Raodiative

* Almost no brown dwarfs form at all = something is missing




The importance of radiative
feedback from protostars

—
Simulation I:

Radiative feedback is included down to the sink radius (1AU)

[similar to Bate’s simulations — most of radiative feedback missing]

Initial conditions: turbulent cloud core
M =54Ms  Nspu = 10° particles

Prernet RxerneL = 5000 AU

(1 + (r/Reeme1)?)*  pPrerneL = 3 X 107 gem™

Rcore = 50000 AU

= SPH code by David Hubber et al. (2010), submitted

¥ Diffusion method of Stamatellos et al. (2007)

p(r) = 3
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Disc fragmentation criteria

(ii) fast cooling

Cooling time/Period

VA A A
200 400
Radius (AU)




The importance of radiative
feedback from protostars

-
Simulation I1:

Radiative feedback from protostars is fully included
Continuous radiative feedback

[similar to Offner, Krumholz, Klein simulations]
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Accretion is episodic: FU Ori’s

= FU Ori-type stars rise time: 1-10 yr
Hartmann & Kenyon 1996, ARAA duration: 10s to a few 100s yr
Accretion rate: a fewl0* Mg/yr
Mass: 0.01-0.1 Mg/event
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Accretion is episodic: FU Ori’s

= FU Ori-type stars rise time: 1-10 yr
Hartmann & Kenyon 1996, ARAA duration: 10s to a few 100s yr
Accretion rate: a few 104 Mg/yr
Mass: 0.01-0.1 Mg/event
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Accretion is episodic: Herbig-Haro objects
=

Visible « WFPC2

protostar results in episodic
ejection of material.

" Episodic accretion onto a A
-
y

Infrared « NICMOS

HH111
Hubble Space Telescope
WFPC2 « NICMOS

Reipurth Nature 340 ,42—45(1989) RNasa and 6. Reipurth (CASA, University of Colorado) s STScI-PRC00-05




Accretion is episodic: the luminosity problem

-

* The luminosities of protostars are not high enough (Kenyon et al. 1990;
Evans et al. 2009; talk by Erin Kryukova earlier today)

 GMM

~ 20L
R, =

0.5Mg/10%yr — M =5 x 107 Mgyr—! — L

* FU Or1 type outbursts may happen for all protostars providing a solution
to the luminosity problem :the luminosity is very high only during short events




The case for episodic accretion

* Thermal instability (Bell & Lin 1994)

* Binary companion (Bonnell & Bastien)

* Gravitational instabilities (Vorobyov & Basu 2005, 2006)
* Planet “blocking” (Lodato & Clarke 2004)

e Zhu, Hartmann et al. 2008-2010: The combined effect of different
angular momentum transfer efficiencies of the gravitational instability
(GI) and magneto-rotational instability (MRI).

GI: works better >10 AU from the star
MRI: works better at <1 AU

MRI is initiated when T, >1400 K in the inner disc region and the
outburst starts. Stops when temperarture drops again.




Episodic accretion: Gl vs MRI

acr >~ 0.3




Episodic accretion: Gl vs MRI




A phenomenological model
of episodic accretion




A phenomenological model
of episodic accretion

Duration of an episodic ) ( MRI )

0.13 Mg
Zhu et al. 2010a

accretion event




The importance of radiative
feedback from protostars

-
Simulation III:

Radiative feedback from protostars is fully included;

the radiative feedback is not continuous but episodic
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Example of an outburst
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* The importance of radiative feedback depends on

- duration of outburst (Atyg)
NI [E

- how often an outburst happens (Tg,)




Concluding remarks

» Episodic radiative feedback (due to episodic accretion) limits
considerably the effects of the protostellar luminosity

* Disc fragmentation is still possible; discs fragment to form
low-mass stars, brown dwarfs and planetary-mass objects

" The frequency of episodic accretion events may regulate low-
mass star formation in different environments.




