Molecular Outflows in the Substellar Domain

Ngoc Phan-Bao HCMIU, VietNam National University Academia Sinica IAA

Collaborators: Paul Ho (CfA, ASIAA), Chin-Fei Lee (ASIAA), Eduardo Martín (CAB), Basmah Riaz (STScI)

Outline

- Motivation
- SMA and CARMA arrays.
- ¹²CO J=2→1 observations of young brown dwarfs in rho Ophiuchus and Taurus.
- Observations of proto-brown dwarfs with ALMA.

Motivation

Molecular outflows provide a key piece of information on the earliest phase of brown dwarf formation: outflow morphology and properties (velocity, scale, mass, mass loss rate), giving some constraints on:

> star formation in the substellar domain

> the origin of brown dwarfs

Submilimeter Array and Combined Array for Research in Millimeter-Wave Astronomy

SMA (Ho, Morran & Lo 2004)

- A jo
- Eigh

- 4 receiver bands: 230, 345, 400 and 690 GHz
- Bandwidth: 2 GHz and 4 GHz
- Configurations: subcompact, compact, extended, very extended
- Angular resolutions: 5"-0.1" (at 345 GHz)

SMA Correlator

Orion KL, Beuther et al. 2005

CARMA

• A university-based millimeter array at Cedar Flat (US)

• six 10.4-meter, nine 6.1-meter, and eight 3.5-meter antennas

3 receivers: 27-35 GHz (1 cm),
85-116 GHz (3 mm) and 215-270
GHz (1 mm); 8 bands available.

• Configurations: A, B, C, D, E

Angular resolutions: 0.3", 0.8",
2", 5", or 10" at 100 GHz

Bandwidth (MHz)	Channels (per sideband)	Chan. width (MHz)	dV [1mm] (km/s)
500	96	5.21	5.2
250	191	1.31	1.3
125	319	0.392	0.39
62	383	0.161	0.16
31	383	0.081	0.081
8	383	0.021	0.021

¹²CO J=2 \rightarrow 1 observations (C¹⁸O and ¹³CO 2-1) SMA: compact, synthesized beam of 3.6" x 2.5", 0.25 km/s

CARMA: D configuration, 2.8" x 2.5 ", 0.18, 0.39, 0.74, and 1.3 km/s

ISO-Oph 102

Whelan et al. 2005

CO J=2→1 MAP (230 GHz)

Phan-Bao et al. 2008

Disk Parameters

Spectral Energy Distribution

CO J=2→1 MAP (230 GHz)

Outflow mass: 1.6 × 10⁻⁴ M_☉
Mass loss rate: 1.4 × 10⁻⁹ M_☉/yr
→over 100 times smaller than the typical values for T Tauri stars!

Phan-Bao et al. 2008

This first detection provides molecular outflow properties to constrain modeling works on brown dwarf formation (e.g., Machida et al. 2009)

Standard Models for Molecular Outflow Formation

Jet-driven bow shock model
 (e.g., Raga & Cabrit 1993) →
 Observation:
 Spur position-velocity structure

Wind-driven-shell model
 (e.g., Shu et al. 1991) →
 Observation:

Parabolic position-velocity structure

(Lee et al. 2000)

Jet-Driven Bow-Shock Structure

Position-Velocity Diagram

Lee et al. 2000

ISO-Oph 102 of 0.08 L_{\odot} versus A more massive object of 17 L_{\odot}

Providing us an insight into the outflow morphology and the first case to test the star formation theory in the substellar domain.

MHO 5 (90 M_J , \dot{M}_{acc} =1.6x10⁻¹¹ M_{\odot} /yr, Taurus)

Observations of Proto-Brown Dwarfs

<u>Question:</u> Can we observe the formation of brown dwarfs (planetary mass objects) even at earlier phases?

Whitworth et al. 2007

•ALMA is 10-100 times more sensitive and 10-100 times better angular resolution than the current mm/submm arrays.

To achieve the same continuum sensitivity, ALMA only needs 1 sec while SMA needs 8 hours.

→ An excellent instrument to search for proto-brown dwarfs /planetary mass objects class II, I, O, BD-cores, and the BD disk structure.

Summary

- Molecular outflow properties: compact and smallscale structures of ~200-500 AU; Low velocities: 1-3 km/s; Outflow mass: 10⁻⁴ M_☉; Mass loss rate: 10⁻⁹ M_☉/yr
- The molecular outflow in the substellar domain is a scaled-down version of that in low-mass stars.
- This suggests that very low mass stars and brown dwarfs form like low-mass stars in a version scaled down by a factor of over 100.

SMA, CARMA, ALMA

Core

Class 0 (?)

Class I (?)

Class II BD

Phan-Bao et al., in prep.

Bourke et al. 2005

Phan-Bao et al. 2008

Image Credit: ASIAA