

Inverse Mass Segregation in Taurus

Richard Parker^{1,2}

Collaborators: Jerome Bouvier³, Simon Goodwin², Estelle Moraux³, Richard Allison², Sylvain Guieu⁴, Manuel Güdel⁵

- 1 ETH Zürich, Switzerland (email: rparker@phys.ethz.ch)
- 2 University of Sheffield, UK
- 3 Observatoire de Grenoble, France
- 4 ESO, Chile
- 5 University of Vienna, Austria

Mass Segregation

- Over-concentration of particular mass range of stars with respect to random stars.
- 'Inverse' mass segregation is an underconcentration of a mass range.
- Most methods for finding it are reliant on the definition of a cluster centre.
- They also bin the data, which removes (sometimes) vital information.

The MST Method

- Compare MST of subset of objects to random subsets.
- Ratio of average MST length to subset length gives us quantitative mass segregation ratio:

$$\Lambda_{\rm MSR} = \frac{\langle l_{\rm average} \rangle^{+\sigma_{5/6}/l_{\rm subset}}}{l_{\rm subset}}$$

The ONC

- Allison et al. (2009, MNRAS, 395, 1449) find $\Lambda_{\rm MSR} = 8.0 \pm 3.5$ for most massive stars in the ONC.
- Also find stars down to $5M_{\odot}$ are mass segregated with $\Lambda_{MSR} = 2.0 \pm 0.5$.
- Advantage of MST does not require definition of cluster centre.

Taurus

- Data compiled for XEST survey & updated from recent surveys.
- Red = 20 most massive objects.
- Blue = 20 least massive objects.

Swiss Federal Institute of Technology Zurich

Most Massive Objects

• $\Lambda_{MSR} = 0.7\pm0.1$ (inverse mass seg.).

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Least Massive Objects

- BDs also inversely segregated?
- Need to take another approach...

The 'Slide' Technique

Taurus – central region

- Complete fields shown by black outlines (e.g. Luhman 2010).
- Red = 20 most massive objects.
- Blue = 20 least massive objects.

Most Massive Objects

- $\Lambda_{MSR} = 0.8\pm0.1$ (still some inverse mass seg.).
- But many of the most massive stars not in central region

Summary

- 'Slide MST' method confirms that the stars m > $1M_{\odot}$ are slightly inversely mass segregated ($\Lambda_{\rm MSR}$ = 0.7±0.1).
- Effect is diluted when considering only the central region.
- This result is for the whole association see Helen Kirk's talk for results from the various sub-groups.
- Tentative evidence for slight mass segregation of low-mass stars ($\Lambda_{MSR} = 1.25 \pm 0.15$)
- Brown dwarfs have $(\Lambda_{MSR} = 1)$.