collisional formation of massive stars in accreting clusters

Nick Moeckel
Institute of Astronomy, University of Cambridge
with Cathie Clarke

CONSTELLATION school on numerical astrophysics and its role in star formation

" N -body codes can't tell us anything more about star formation"

Matthew Bate
(paraphrased, but only slightly) January 23, 2009

n-body techniques for star formation

We've reached the end of the usefulness of standard n-body studies applied to very young clusters. spherical initial conditions
gas treated, if at all, as a spherical potential otherwise, no gas-star interaction sub-structured ICs
(Aarseth \& Hills 1972;
McMillan+2007;Allison+2009; Moeckel \& Bonnell 2009)
spheroidal gas potential, introduce stars over time (Adams+2006; Proszkow+2009)
early dynamical evolution occurs with gas present. can't ignore this.

numerical context

the basic picture

Bonnell, Bate \& Zinnecker 1998

initial conditions for simulations

start with low mass seeds $0.03-3.0 \mathrm{M}_{\mathrm{o}}$, Salpeter slope grow in mass linearly with time, proportional to mass (so the IMF shape is preserved)

Plummer spheres, 32k stars
gas potential that lowers with increasing stellar mass after stars have grown to max of $30 M_{o}$, gas removed global sfe $=30 \%$
collisions with perfect efficiency

(gas/stars) evolves, determines behavior

 gas potential dominates the dynamics, accretion drives contraction of stellar componentI) accretion behaves as if gas flowing from an external reservoir
2) mass segregation can begin to drive core collapse

time
move into pure n-body dynamics

regime I: smaller initial radii

mass segregation and collapse begin during accretion

regime 2: larger initial radii

mass segregation and collapse begin after accretion
earlier core collapse $=$ more collisions

$$
r_{v}=0.75 \mathrm{pc}
$$

t/Myr
collision
partners

$$
r_{\mathrm{v}}=3.0 \mathrm{pc}
$$

earlier core collapse = more collisions

t/Myr

t/Myr

602, 46, 39	276,37	100	---
$\begin{aligned} & \text { masses }>30 \mathrm{M}_{\circ} \\ & \text { at } 2 \mathrm{Myr} \end{aligned}$	344	143	
	356,31	145	
	368	65,45	
	321	57,39	

compare to the Arches: mass density

 Arches probably the most likely local place to look for something like this. These experiments aren't specifically tailored to the Arches, but can check bulk cluster properties.
compare to the Arches: surface density

conclusions

accretion during cluster formation can easily lead to high very densities
with populous compact clusters, collisions occurgenerally have a runaway character not going to smoothly fill up the upper IMF like this, but can get exotic objects
offers a way to form stars at comfortable separations, shrink the cluster, leave it compact after gas expulsion

binaries

replace most massive I\% of stars with equal-mass, circular binaries set to be hard at the end of accretion.
'depth' of core collapse is shallower, so binaries are affecting the relaxation dynamics. collisions rate enhanced.

