

Vera Könyves

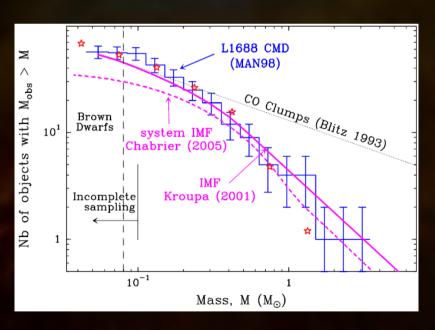
SAp, CEA/Saclay, France

Ph. André, A. Men'shchikov, N. Schneider, S. Bontemps, D. Arzoumanian, M. Attard, F. Motte, P. Didelon, A. Maury

and the SPIRE SAG 3 consortium:

A. Abergel, J.-P. Baluteau, J.-Ph. Bernard, L. Cambrésy, P. Cox, J. Di Francesco, A.-M. di Giorgo, M. Griffin, P. Hargrave, M. Huang, J. Kirk, J. Z. Li, P. Martin, V. Minier, S. Molinari, G. Olofsson, S. Pezzuto, H. Roussel, D. Russeil, P. Saraceno, M. Sauvage, B. Sibthorpe, L. Spinoglio, L. Testi, D. Ward-Thompson, G. White, C. D. Wilson, A. Woodcraft, and A. Zavagno

The *Herschel* prestellar core population in the Aquila Rift cloud complex


(Herschel Gould Belt survey)

THE HERSCHEL GOULD BELT KP

The *Herschel* Gould Belt key program is a wide-field photometric survey of nearby star-forming cloud complexes with *Herschel* SPIRE/PACS. (talk by Ph. André)

A scientific motivation of the KP is to determine the distribution of stellar masses at birth (IMF); what is the link between the prestellar CMF and the stellar IMF?

Earlier works: ground-based (sub)-millimeter dust continuum surveys of nearby cluster-forming clouds (e.g. ρ Ophiuchi, Serpens) => small samples of prestellar cores, but their CMF resemble the stellar IMF.

References, e.g.:

Motte, André, Neri 1998; Testi & Sargent 1998; Johnstone et al. 2000; Stanke et al. 2006; Enoch et al. 2006; Nutter & Ward-Thompson 2007; Alves et al. 2007; André et al. 2007.

Cumulative mass distribution of 57 starless condensations in ρ Oph (Motte, André, Neri 1998; André et al. 2007)

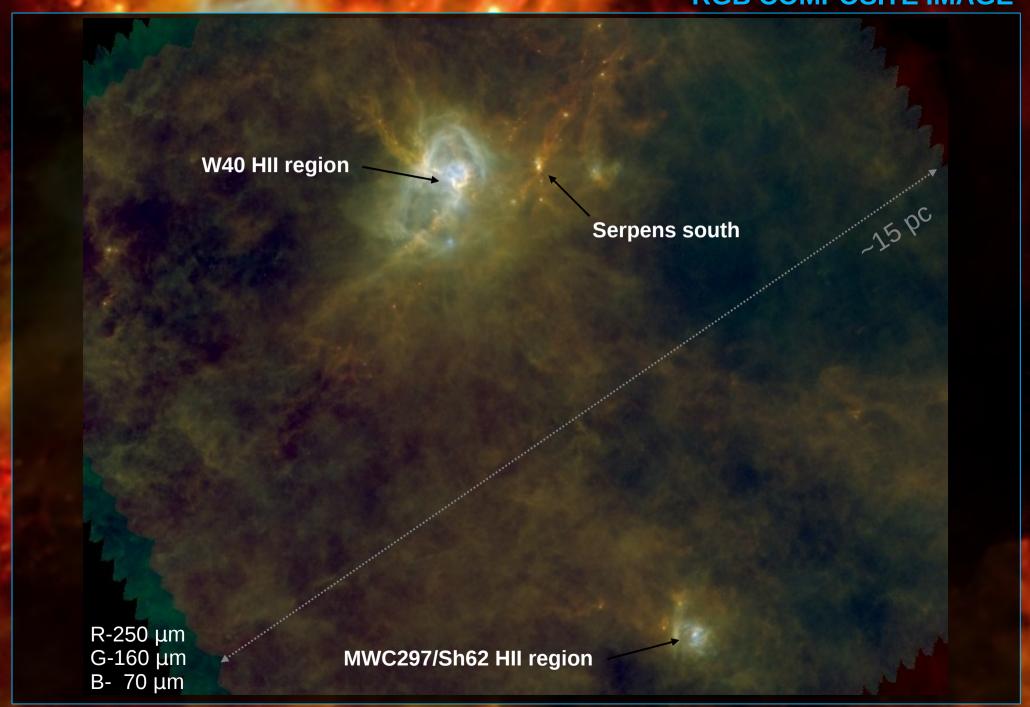
Favored theoretical scenario: The IMF of solar-type stars is largely determined by pre-collapse cloud fragmentation (Padoan & Nordlund 2002; Hennebelle & Chabrier 2008).

SDP Observations

SPIRE/PACS parallel-mode observations of the Aquila Rift complex:

- Observed on 24 October 2009
- A common ~11 deg² area was covered by both SPIRE/PACS
- Scan maps were taken with 60"sec⁻¹ scanning speed

Data reduction


SPIRE (250/350/500 μm):

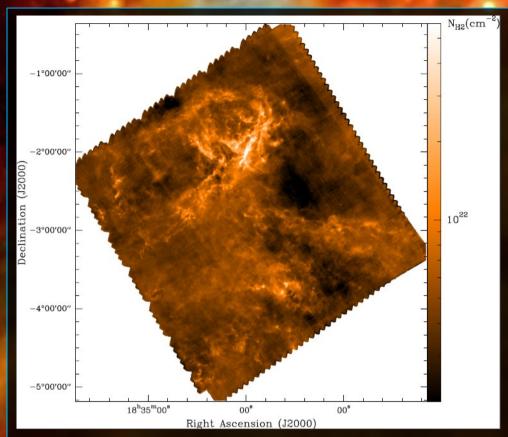
- Using HIPE version 2.0 with modified pipeline scripts, delivered with this version.
- Map making with 'naive' method.

PACS (70/160 μm):

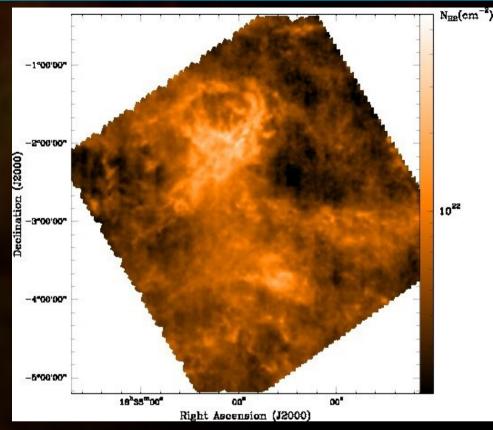
- With HIPE version 3.0, applying standard steps of the default pipeline with modifications.
- Map making with photProject task (later on with madMap).
- Many thanks to M. Sauvage, B. Ali, M. Hennemann, H. Aussel, N. Billot, B. Altieri, P. Chanial

RGB COMPOSITE IMAGE

DERIVATION OF PHYSICAL PARAMETERS

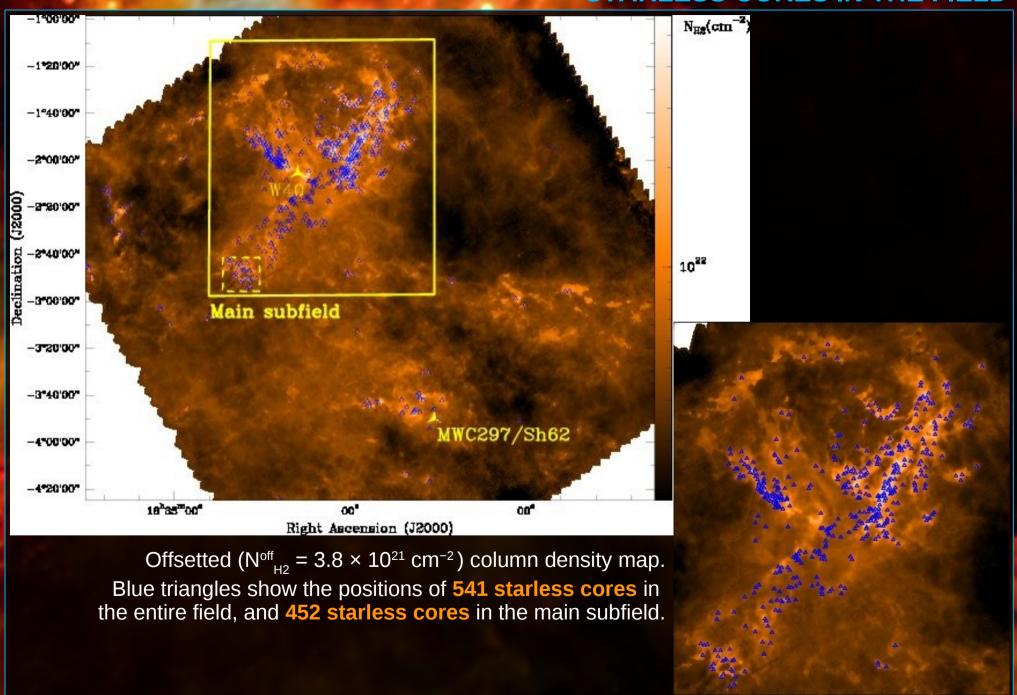

Dust temperature (T_d) and column density (\Sigma) maps, constructed from Herschel SPIRE/PACS data:

- Weighted SEDs constructed for all map pixels from the 5 SPIRE/PACS wavelengths.
- SEDs fitted by a greybody, $I_{\nu} = B_{\nu}(T_{d})(1 e^{-\tau \nu})$ I_{ν} : observed surface brightness at ν ; $\tau_{\nu} = \kappa_{\nu} \Sigma$: dust optical dept; κ_{ν} : dust opacity per unit (dust+gas) mass, $\beta = 2$ (e.g. Hildebrand 1983).
- The two free parameters T_d and Σ were derived from the greybody fit to the 5 *Herschel* data points for all pixels.


Estimation of dust temperature, column density, and mass of cores:

- A similar SED fitting procedure (above) was employed.
- These SEDs were constructed from integrated flux densities measured by getsources (Men'shchikov et al. 2010) for the extracted sources.
- Core mass calculation using 260 pc to Aquila (see discussion on distance uncertainty in Bontemps et al. 2010; André et al. 2010), estimated mass uncertainty is a factor of \sim 2, mainly due to κ_{ν} .

COLUMN DENSITY MAPS


'Planck-offsetted' column density map of the Aquila entire field derived from *Herschel* data. (FWHM = 36").

Near-IR extinction map based on 2MASS data (Bontemps et al. 2010), in units of column density, using the relation $N_{H2} = 10^{21} \text{ cm}^{-2} \times A_{V}$ (FWHM = 2').

- Herschel mapping does not constrain the zero level of the background emission, so we optimized the match with Planck data at each Herschel wavelengths (J-Ph. Bernard).
 => our column density maps were shifted by a uniform offset Noff H2 = 3.8 × 10²¹ cm⁻².
- This same zero level was confirmed from near-IR extinction maps (Bontemps et al 2010).

STARLESS CORES IN THE FIELD

SOURCE DETECTION AND IDENTIFICATION

Source extraction

Compact sources were extracted from the SPIRE/PACS images using getsources, a multi-scale, multi-wavelength source finding algorithm (Men'shchikov et al. 2010).

Only robust sources were considered with significant (S/N > 7.5) detections in at least two SPIRE bands.

Distinction between starless cores and protostars/YSOs

Aquila main subfield: *Spitzer* 24 μm observations + PACS 70 μm data.

- YSOs: Detected in emission above the 5σ level at 70 μm and/or 24 μm
- Starless cores: undetected in emission (or detected in absorption) at both 70 μm and 24 μm.
- => 452 starless cores in the Aquila main subfield.

Aquila entire field: Only PACS 70 µm data

=> we identified a total of **541 starless cores** and **201 embedded YSOs** (~**50 Class 0 protostars**, Bontemps et al. 2010).

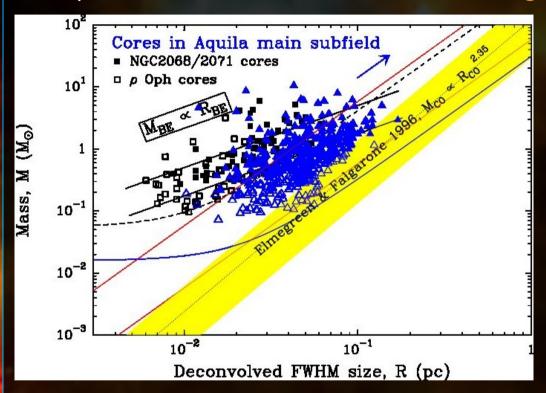
PRESTELLAR CORES IN AQUILA PRESTELLAR NATURE OF THE STARLESS CORES I

(I.) We used the **critical Bonnor-Ebert (BE) mass**, $M_{BE}^{crit} \approx 2.4 R_{BE} a^2/G$, as a surrogate for the virial mass, to **determine if the cores are gravitationally bound or not.** R_{BE} : BE radius; a: isothermal sound speed; G: gravitational constant.

Assumptions: thermal motions are dominant over non-thermal motions in starless cores (André et al. 2007)

Then, two estimates of the BE mass were derived for each objects:

- $(1) M_{BE}(R_{obs})$
- (2) $M_{BE}(\Sigma_{cl})$, where Σ_{cl} is the column density of the local background cloud

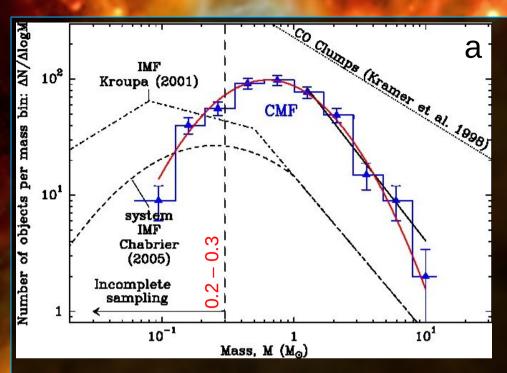

Good candidate prestellar cores, selected from starless cores if their BE mass ratio: $\alpha_{BE} = \max[M_{BE}(R_{obs}), M_{BE}(\Sigma_{cl})] / M_{obs} \le 2.$

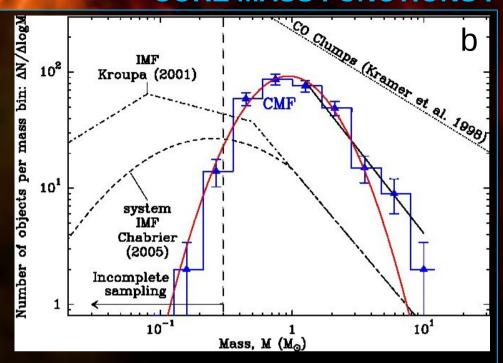
=> ~70 % of the 452 starless cores in the main subfield,

and more than 60 % of the 541 starless cores in the entire field were found to be gravitationally bound.

PRESTELLAR NATURE OF THE STARLESS CORES II

(II.) The high fractions of bound objects are consistent with the locations of the Aquila starless cores in a mass vs. size diagram.

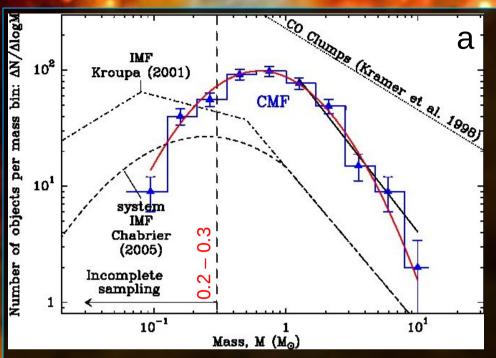


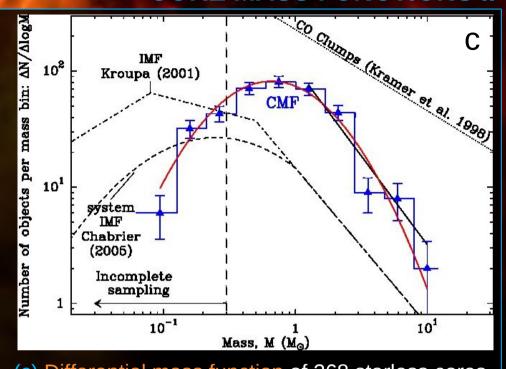

Mass vs. size diagram comparing the locations of 314 candidate prestellar cores (△), and the rest starless cores (△), identified with *Herschel* in the Aquila main subfield, to both models of critical isothermal BE spheres (at T=7K, T=20K) and observed prestellar cores (Motte et al. 1998, 2001).

(III.) The self-gravitating character of most *Herschel* cores is supported by their internal column density contrast: $\Sigma_{\text{peak}} / < \Sigma_{\text{core}} >$ (Johnstone et al. 2000); similar way, by the core intensity values: $I^{\text{peak}} / < I_{\text{peak}} >$ (peak/mean intensities of the core).

(IV.) Column density contrast of the *Herschel* cores over the local background: => Also confirms that most of the starless cores are self-gravitating, and prestellar in nature.

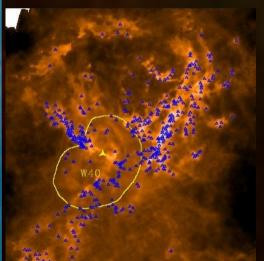
CORE MASS FUNCTIONS I



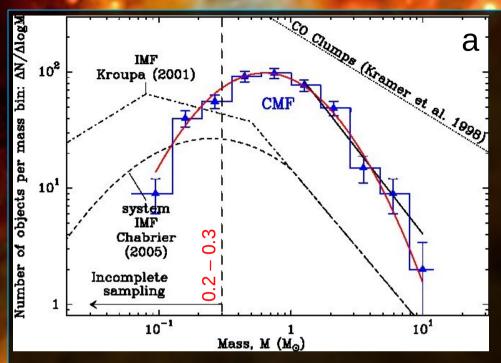

Differential mass function of 452 starless cores (a), and of 314 candidate prestellar cores (b) identified in the Aquila main subfield. The mass function is approximated with a lognormal fit, the high-mass end is fitted by a power-law (Könyves et al. 2010).

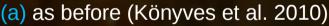
- (a) Lognormal fit: peak at $\sim 0.6 \text{ M}_{\odot}$, standard deviation $\sim 0.42 \text{ in } \log_{10} \text{M}$. fitted power-law: $dN/dlogM \propto M^{-1.5\pm0.2}$
- (b) Lognormal fit: peak at $\sim 0.9 \ M_{\odot}$, standard deviation $\sim 0.30 \ \text{in log}_{10} M$. fitted power-law: $\frac{\text{dN}}{\text{dlogM}} \propto M^{-1.45 \pm 0.2}$

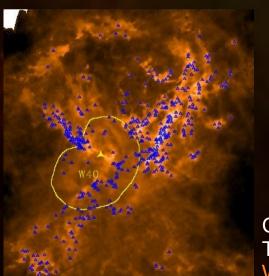
while the **Salpeter IMF** is $dN/dlogM \propto M^{-1.35}$.

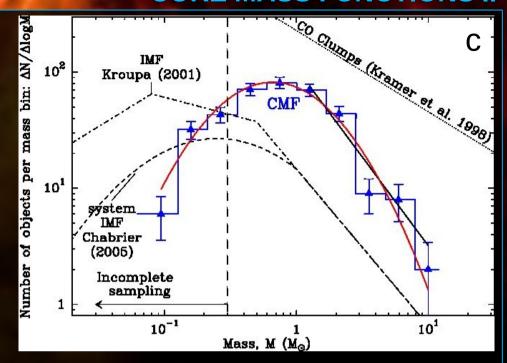

CORE MASS FUNCTIONS II

(a) as before (Könyves et al. 2010)




(c) Lognormal fit: peak at $\sim 0.7 \, \mathrm{M}_{\odot}$, standard deviation $\sim 0.40 \, \mathrm{in \, log_{10} M}$. fitted power-law: $\mathrm{dN/dlogM} \propto \mathrm{M}^{-1.5 \pm 0.3}$


very close to (a), (b), and to the Salpeter power-law => robustness of our CMF

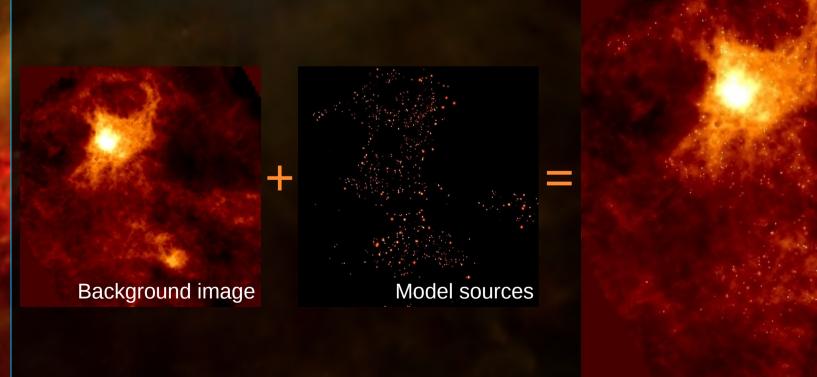

Column density map with starless cores in the Aqila main subfield. The PDR, with high infrared background emission, around the W40 HII region was defined using T_d map (Bontemps et al. 2010).

CORE MASS FUNCTIONS II

- (c) Differential mass function of 368 starless cores, excluding 83 cores toward the PDR region.
- (c) Lognormal fit: peak at $\sim 0.7 \, \rm M_{\odot}$, standard deviation $\sim 0.40 \, \rm in \, \log_{10} M$. fitted power-law: $\rm dN/dlogM \propto M^{-1.5\pm0.3}$

very close to (a), (b), and to the Salpeter power-law => robustness of our CMF

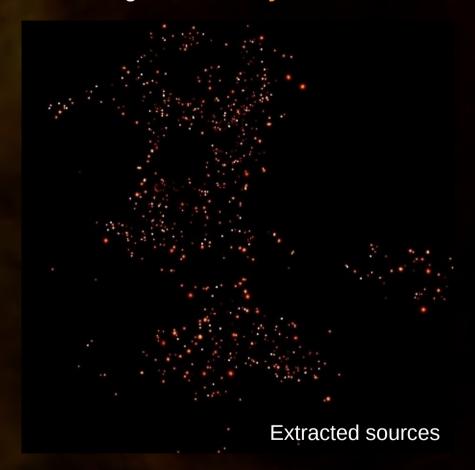
Column density map with starless cores in the Aqila main subfield. The PDR, with high infrared background emission, around the W40 HII region was defined using T_d map (Bontemps et al. 2010).


COMPLETENESS ANALYSIS I

Monte Carlo simulations were preformed to estimate the completeness level of our SPIRE/PACS survey, summarized in the following steps:

 Subtraction of compact sources (getsources) from Herschel maps => clean maps of background emission.

• Radiative transfer simulated objects (Men'shchikov et al. In prep.): ~700 starless cores, ~200 protostars with $0.01-10~{\rm M}_{\odot}$, and M \propto R => inserted at quasi random

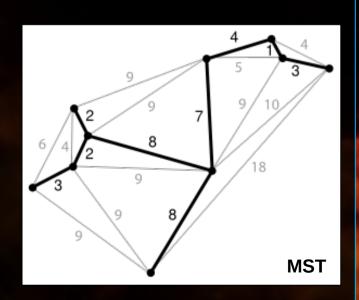

positions in the clean-background images.

COMPLETENESS ANALYSIS II

• Source extraction (getsources) was performed again on the synthetic skies.

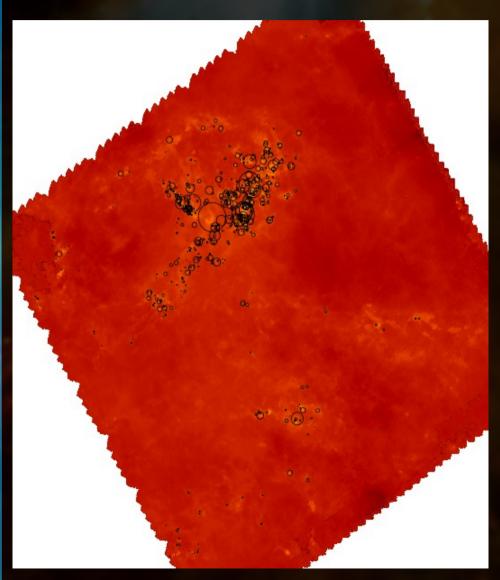
Estimated completeness level:

- for prestellar cores: 75 % and 85 % above a core mass of ~0.2 and ~ 0.3 ${\rm M}_{\odot}$
- for embedded protostars: >90 % down to $L_{bol} \sim 0.2 L_{\odot}$


COLLABORATIONS within CONSTELLATION I

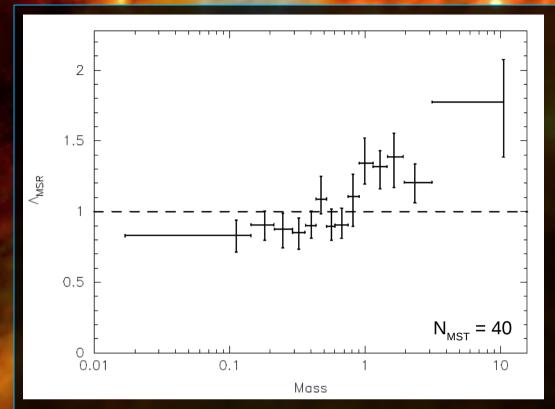
Discussions and visits on the topic of mass segregation of cores in the Aquila field, using:

- our large sample of Herschel starless cores (Könyves et al. 2010; V. Könyves, CEA/Saclay)
- the minimum spanning tree (MST) method (Allison et al. 2009a) by S.P. Goodwin, R.J. Allison, R.J. Parker (University of Sheffield)
- Th. Maschberger's MST method (University of Cambridge)


The minimum spanning tree (MST) method:

- Network of connected points with minimum possible total length of connections (path with the shortest possible pathlength).
- Closed loops are not allowed.

PRESTELLAR CORES IN AQUILA COLLABORATIONS within CONSTELLATION II


Mass segregation can be quantified (Λ_{MSR}) by comparing the typical MST of N cluster stars with the MST of the N most massive stars (Allison et al. 2009b).

The MST method finds the MST length of the N most massive stars (l_{massive}) and compares this to the MST length of sets of N random stars in the cluster ($\langle l_{\text{norm}} \rangle$)

Distribution of masses of 541 Herschel starless cores plotted on a 250 μ m Aquila map. The larger the symbol is, the larger the mass of the starless core has.

COLLABORATIONS within CONSTELLATION III

Mass segregation measure of 541 starless cores in the entire Aquila field.

Measure of mass segregation (Λ):

$$\Lambda = \langle l_{\text{norm}} \rangle / l_{\text{massive}} \pm \sigma_{\text{norm}} / l_{\text{massive}}$$

$$1 \sigma \text{ error in } \Lambda$$

 $\langle l_{\text{norm}} \rangle$ = average random MST path length l_{massive} = length of the massive star/core MST

 Λ ~ 1: massive cores are distributed in the same way as all other cores

 $\Lambda > 1$: mass segregation

 Λ < 1: inverse-mass segregation

Preliminary conclusions:

In the entire Aquila field $\Lambda > 1$ ($\ell_{\text{massive}} < \langle \ell_{\text{norm}} \rangle$) => massive cores have slightly more concentrated distribution, the *Herschel* starless cores show mass segregation.

These results from *Herschel* observations can be compared with simulations to investigate the early dynamical evolution of clusters.

Herschel Gould Belt survey SDP observations of the Aquila Rift complex with SPIRE and PACS at $500 - 70 \mu m$:

- Provided >500 starless cores in the entire field, and >400 in the main subfield, down to ~0.2 – 0.3 M_a.
- Most of these objects appear to be self-gravitating prestellar cores that will likely form protostars in the near future.
- Our results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much better statistics than earlier sub-millimeter ground-based surveys, and more accurate core masses.
- We conclude that **our mass distributions are robust**, not depending strongly on distance, different sets of extracted sources, and on different locations of the maps.
- Ongoing collaborations on mass segregation in Aquila (massive starless cores have slightly more concentrated distribution).

For more details, see in A&A, Vol. 518: Könyves et al. 2010; André et al. 2010; Bontemps et al. 2010; Men'shchikov et al. 2010

THANK YOU!