

Stellar Pensity

Robert King (Exeter)

Richard Parker (ETH Zurich), Jenny Patience (Exeter) & Simon Goodwin (Sheffield)

Motivation

- Multiplicity is a basic imprint of SF process
- IMFs can mask multiplicity
- But multiplicity seems to be environment-dependent

de Marchi et al. 2008 & Bastian et al. 2010

~2.4 pc
Taurus DSS

~2.4 pc L1688 2MASS/Montage

~2.4 pc L1688 2MASS/Montage ~ | .9 pc IC348 Muench et al. 2003

~1.9 pc IC348 Muench et al. 2003

~0.8 pc ONC McCaughrean

~0.8 pc IC348 Muench et al. 2003 ~0.8 pc ONC McCaughrean

~0.8 pc ONC McCaughrean ~6.0 pc NGC3603 ESO

~0.8 pc ONC McCaughrean ~0.8 pc NGC3603 ESO

Previous Studies

- Puquennoy & Mayor 1991 measured sep. distribution in solar neighbourhood
- High multiplicity in Taurus and Ophiuchus
 - Ghez et al. 1993, Leinert et al. 1993
- ONC
 - Prosser et al. 1994,
 Koehler et al. 2006

Where are those binaries?

- Spectroscopic Binaries
- Pirect Imaging (& speckle imaging)
- Interferometry
 Lunar Occulatations

MAD/ONC Buoy et al. 2008

Where are those binaries?

- Spectroscopic Binaries
- Direct Imaging (& speckle imaging)
- Interferometry
 Lunar Occulatations

MAD/ONC Buoy et al. 2008

So what's the problem?

- Separation ranges probed
- Flux ratio sensitivity
- Different distances
- Small samples

- Multiplicity Fraction over observed sep. ranges
- Pensity defined within
 0.25 pc of centre

- Taurus (Leinert+ 1993)
- L 1688 (Ratzka+ 2005)
- 10348 (Puchene+ 1999)

ONC (Reipurth+ 2007)

- Multiplicity Fraction over observed sep. ranges
- Density defined within
 0.25 pc of centre

- Taurus (Leinert+ 1993)
- L 1688 (Ratzka+ 2005)
- 10348 (Puchene+ 1999)

• ONC (Reipurth+ 2007)

- Multiplicity Fraction over common sep. range 32-830 AU
- Density defined within
 0.25 pc of centre
- Taurus, L 1688 (Oph), IC348

- Multiplicity Fraction over common sep. range 60-600 AU
- Density defined within
 0.25 pc of centre
- Taurus, L 1688 (Oph), IC348 and ONC

Simulation Setup

- N-body simulations (Parker et al. 2009)
 - N=200 1500 stars
- Distribute mass in a Plummer sphere with characteristic half-mass radii
 - 0,1, 0.4, 0.8 pc
- Primary masses from Kroupa IMF
 - Companion mass from flat mass ratio distribution
- Assume an initial binary fraction
 - 100% or field-like
- Evolve for 1 Myr...

Simulation Results

- Simulations tailored to each region
 - Number of stars
 - 1/2 mass radii
 - Pensities

What does this mean for IMFs?

 Unknown multiplicity can lead to uncertain mass estimates

So what about denser regions?

 We are using X-ray bias to probe multiplicity in 10 High-Mass, High Pensity SFRs

Probe separation range that is unresolved to direct imaging

● <800 AU @ 1.6 kpc

Conclusions

- Denser region -> Fewer Binaries
- Can be explained by stellar encounters
- Not necessarily casual
- Wish list...
 - Multiplicity in denser SFRs On its way!
 - Multiplicity at earlier stages (e.g., Duchene et al. 2007)

Range of Galactic SFRs

Range of Galactic SFRs

Range of Galactic SFRs

