SMA Survey of Low Luminosity YSOs in Perseus

Masaaki HIRAMATSU

Taiwan-ALMA Regional Center Astronomer, Academia Sinica Institute of Astronomy and Astrophysics, Taiwan

Collaborators:

N. Ohashi (ASIAA),

H. R. Chen (NTHU),

Y. Shimajiri (NAOJ),

R. Kawabe (NAOJ),

M. Momose (Ibaraki U.)

Introduction

- VelLOs (Very Low Luminosity Objects)
 - Low luminosity object in "starless" cores (Young+ 2004)
 - Def: Internal luminosity $< 0.1 L_{sun}$ (Di Francesco+ 2007)
- What is the nature of VellOs?
 - Extremely young protostar (Type 1)?
 - Proto-brown dwarf (Type 2) ?
- Large variation of the observed properties
 - IRAM04191 v.s L1014 IRS
 - Mixture of 2 types? Outflow $(15,000AU, 0.03 M_{sun} v.s. 500AU, <10^{-4} M_{sun})$
 - 230GHz continuum (29 mJy v.s. 7 mJy)

Belloche+ 2002

SMA Observation

- Purpose:
 - Distinguish the very young protostar (Type 1) and Proto-brown dwarfs (Type 2) based on Continuum flux/CO outflow
- Observations: 2009/11/27, 12/21, 2010/04/02:
 SMA compact-configuration, 230 GHz
- Targets: 8 low luminosity YSOs in Perseus (*D* = 250 pc), listed in Dunham et al. (2008):
 - Accompanied with mm/submm (SCUBA/Bolocam) cores
 - $T_{bol} < 70 \text{ K}$
 - $-L_{bol} < 1 L_{sun}$ (maximum L_{bol} : 0.64 L_{sun}): slightly brighter than VeLLOs
- Synthesized beam ~3.5" x 3.0" (~880 x 750 AU @ 250 pc)
- CLEANed with Miriad, imaging with Natural weighting

CO Outflow

- Less massive (< $1x10^{-4} \sim 4x10^{-3} M_{sun}$) than those from typical YSOs
- Continuous distribution between L1014/IRAM04191

CO outflow and Mass accretion

- Outflow mass (< $1x10^{-4} \sim 4x10^{-3} M_{sun}$)
- Assuming Outflow Mass-loss rate $^{\sim}$ Mass accretion rate to star , the masses of the central YSO are also $1x10^{-4}$ $^{\sim}$ $4x10^{-3}$ M_{sun}
- The lifetime of Class 0 objects: $10^4 \sim 10^5$ yr (Enoch et al. 2009)
- In order to obtain this mass in 10^4 yr, $\dot{M}_{\rm acc} = 4 \times 10^{-7} \times 1 \times 10^{-8} \, \rm M_{\rm sun}/yr$ (Assuming the inclination angle of 57.3, the dynamical timescales ~5x10³ yr)
- 2 orders of magnitudes smaller than the typical accretion rate ($^{-10^{-6}}$ M_{sun}/yr, Shu 1977)

SMA continuum / SCUBA core

Contour: SCUBA 850um (Ridge+2006)
Lowest contour & interval: 100 mJy/beam

- Sources with > 10mJy [0.03 M_{sun} @ 20K] SMA continuum (yellow box):
 - Located at the center of the well-shaped SCUBA core
- Sources with SMA continuum non-detection (3sigma: 3.6mJy/beam, red box)
 - Located at the periphery of the 850um emission

SMA continuum / SHARC-II core

- Contour: SHARC-II 350um (Hatchell & Dunham 09)
- DCE68 is located at the edge of the 350um emission
- DCE68 is the only source detected in NIR (2MASS) in our samples.
 - -> smaller amount of the circumstellar component

DCE68 & Proto-BD

BD formation simulation (Machida+2009)

Rotating, magnetized core: R=1300AU, 0.22M_{sun}

BD :Mass 0.045 M_{sun}

Envelope: 0.1 M_{sun} Disk: 0.01 M_{sun}

Outflow: $0.1M_{\text{sun}}$, $5x10^3$ AU

DCE68

- Envelope: 0.19 *M*_{sun} in 8000 AU
- SMA Cont. < 3.6mJy ($0.01 M_{sun}@20$ K)
- Outflow: 1x10⁻³ M_{sun}, 6x10³ AU

Half of the core are blown out by the outflow -> Grav. Potential, Mass accretion rate decreases. Similar to DCE68: not accompanied w/ clear core

- Outflow from BD (Phan-Bao et al. 2008)
 - M6-star ISO-Oph 102 (Mass: 0.06 M_{sun})
 - Outflow mass: $3.2 \times 10^{-5} M_{sun}$ (without opacity correction)

Summary

- SMA Survey of 8 low-luminosity YSOs in Perseus
- We examined the classification of (Ve)LLOs into 2 types with compact continuum emission & CO outflow.
- CO outflow mass: continuous distribution b/w Type1/2 candidates (IRAM04191 & L1014). Less massive than the outflow from typical protostars.
- No continuum was detected around DCE68, which is located at the periphery of a SCUBA core. Envelope mass, disk mass, outflow size is comparable to those of the BD formation simulation (Machida et al. 2009): Good candidate for Type 2.
- Sources like DCE68 (offset from SCUBA peak): Type2 candidate?
 More samples are needed to confirm.

Unclear correlations

