Initial conditions and the IMF; a personal view

Lee Hartmann
University of Michigan

John Tobin, Tina Hsu, Zhaohuan Zhu, UM; Fabian Heitsch, UNC; Javier Ballesteros, Gilberto Gomez, UNAM

Jeans lengths and masses

$$c_s^2 < GM/r \propto \rho r^2$$

⇒ collapse if
$$r > r_J \propto c_s \rho^{-1/2}$$

or M > M_J

Jeans masses/lengths are MINIMA

(gravity is a long range force)

⇒ GRAVITATIONAL FOCUSING is UNAVOIDABLE because molecular clouds have MANY M_.

("competitive accretion"; filaments; clusters)

Initial/boundary conditions are important

cannot fully evaluate the plausibility of various theories without understanding how clouds are formed

"You can't get there from here"

(initial/boundary conditions)

How is a cloud of MANY M_J assembled before it collapses?

One option:

"Just wait there while I bring the rest of the 10⁵ thermal Jeans masses over... keep on moving so you don't collapse!

A more reasonable option: large scale flows

crossing time ~ 10-20 Myr; ages ~ 1-2 Myr (in clouds)

⇒ clouds are swept up in ⊥ direction

Froebrich & Rowles 2010, A_V map

Finite sheet evolution with gravity

Burkert & Hartmann 04; piece of bubble wall ≈ sheet

sphere periodic box

minimizes non-linear (positional) global accelerations (clusters!)

F. Heitsch et al. 2007; sheet made by inflows with cooling, gravity; turbulence *first*, gravity *second*

Turbulent substructure (Heitsch, Ballesteros-Paredes, Hartmann):

- (magneto) hydrodynamic turbulence make the initial density fluctuations or "seeds";
- large-scale gravitational acceleration which accounts for much of the velocity dispersion in dense molecular clouds (makes filaments, clusters)

Ballesteros-Paredes et al. 2010: "chaotic" complex gravitational collapse/acceleration ⇒ "virial" cloud masses

Heyer et al. 2009

"Virial" cloud masses

 $GM/R \sim v^2$

Where does the turbulence come from to JUST balance gravity?

If however motions are DRIVEN by gravity:

(2) G M /R $\sim v^2$

And there is no mystery.

How can one avoid non-linear spatial acceleration by gravity in a complex geometry with many Jeans masses?

Turbulent core models:

What is the mechanism which generates the turbulence *in dense regions* to balance gravity? How can it balance gravity if it is anisotropic?

Why doesn't it dissipate rapidly?

Collapse (gravitational focusing) models:

Would have problems if star-forming regions are long-lived

But they aren't.

Gravitational focusing and the stellar IMF

log M→

Accretion of randomly-placed sink particles in a sheet

starting from a single-valued or narrow Gaussian mass distribution, high-mass IMF evolves toward Salpeter

 $\Gamma \Rightarrow -1$ as limiting slope

- Don't need initial cluster;
- upper mass depends upon accretion to completion (correlation between slope and upper mass cutoff?

• M_J∝T² P^{-1/2}; Need *MUCH* higher pressures than ISM to make very low mass stars/bds ⇒ gravity!

What stops accretion?

NOT low-mass outflows – too collimated, infall too focused

I think there are two parts to this question:

- Local; angular momentum ⇒ fragmentation
- Global; runaway gravitational acceleration results in star formation in only a small fraction of the cloud which is very dense;

then low-density regions blown away by massive stars (either internal or external!)

increasing dM/dt (infall) →

high J leads to FRAGMENTATION

Zhu et al. 2010, in preparation

Many examples of complex, filamentary protostellar infall; non-axisymmetry ⇒ aids fragmentation into binary or multiple systems

Tobin et al. 2010, 8µm extinction maps from Spitzer

Magnetic fields **DO NOT PREVENT** formation of large disks even at early stages

Tobin et al. 2010

Protostellar accretion and PMS stellar ages

- stars MUST
 accrete much/most
 of their mass
 through disks
- Episodic bursts of accretion implied by the low luminosities of most protostars
- what does this mean for ages?

FU Ori objects: 10⁻⁴ Msun/yr accretion outbursts

FU Ori: 10⁻⁴ M_☉/yr accretion outburst

Zhaohuan Zhu et al. 2007, 2008

FU Ori disks are internally HOT!

Add thermal energy ⇒ closer to usual birthlines; INITIAL CONDITIONS might matter! (binaries esp.)

Palla & Stahler 2000

Star-forming "events" are spatially correlated!

- Gravitational "focusing", operating on turbulent initial structure: makes filaments, clusters, high-mass IMF, and helps make lowest-mass fragments
- Molecular clouds have regions of global gravitational collapse
- Accretion halted by fragmentation/stellar energy input
- episodic accretion vs. age spreads,
 magnetic activity, mixing... initial conditions

Beware of isochrone problems (mass dependence)

Age "spreads" IN molecular clouds...

Vast amounts of unnecessary confusion can be avoided by keeping in mind the following:

- The bulk of the population is always young
- The "old" stars are *always* a SMALL fraction of the total population
- There is no "cosmic vacuum cleaner" which eliminates contamination from foreground stars
- star formation is spatially correlated

Magnetic field dominated? rotation (outflow) axis ≠⊥ to infall

gravitational focusing: clusters form preferentially at ends of filaments

