A-STAR MULTIPLICITY AND THE COMPANION MASS FUNCTION THE VOLUME-LIMITED A-STAR (VAST) SURVEY

ROBERT DE ROSA

University of Exeter

Thesis Advisor Dr. Jennifer Patience

Patience, J.¹, Marois, C.², Song, I.³, Schneider, A.³, Graham, J.⁴, McConnell, N.⁴, Macintosh, B.⁵, Bessell, M.⁶ ¹ University of Exeter, ² Herzberg Institute of Astrophysics, ³ University of Georgia, ⁴ University California Berkeley, ⁵ Lawrence Livermore National Laboratory, ⁶ Australian National University

Patience, J.¹, Marois, C.², Song, I.³, Schneider, A.³, Graham, J.⁴, McConnell, N.⁴, Macintosh, B.⁵, Bessell, M.⁶ ¹ University of Exeter, ² Herzberg Institute of Astrophysics, ³ University of Georgia, ⁴ University California Berkeley, ⁵ Lawrence Livermore National Laboratory, ⁶ Australian National University

Eclipsing binary system

- Binaries are important
- Unconstrained multiplicity

- Binaries are important
- Unconstrained multiplicity
- Binary formation processes

Formation of triple system through diskassisted capture and fragmentation (Bate et al. 2003)

Core elongation and fragmentation Bonnell & Bastien (1992)

Effects of a potential capture event on circumstellar disks (Lodato et al. 2007)

- Binaries are important
- Unconstrained multiplicity
- Binary formation processes
- Unexplained X-Ray detection

TECHNIQUES AND SENSITIVITIES

Interferometric observations of Mizar A with NPOI (J. Benson)

TECHNIQUES AND SENSITIVITIES

TECHNIQUES AND SENSITIVITIES

THE SAMPLE

- Volume-limited sample (D < 75 pc)
- 500 stars from Hipparcos catalogue

THE SAMPLE

- Volume-limited sample (D < 75 pc)
- 500 stars from Hipparcos catalogue
- B-V between 0.0 and 0.3

OBSERVATIONS

• High-resolution AO data obtained at CFHT, Lick, Gemini, Palomar, WHT

OBSERVATIONS

- High-resolution AO data obtained at CFHT, Lick, Gemini, Palomar, WHT
- Complement with Washington Double Star Catalogue and all-sky surveys (2MASS etc)

OBSERVATIONS

- High-resolution AO data obtained at CFHT, Lick, Gemini, Palomar, WHT
- Complement with Washington Double Star Catalogue and all-sky surveys (2MASS etc)
- Sensitive to bottom of the Main Sequence beyond ~1.5"

MULTIPLICITY

- Used 2MASS (JHKs) source counts
- Reject candidates with background probability above 5%

COMPANION FRACTION

SEPARATION DISTRIBUTION

SEPARATION DISTRIBUTION

G-, M- dwarf distributions

Random capture from the IMF?

Power Law?

Power Law?

UNEXPLAINED X-RAY DETECTION

- Late B- and early A-type stars shouldn't produce X-rays
- X-rays typically generated by magnetic fields or strong stellar winds

UNEXPLAINED X-RAY DETECTION

- Late B- and early A-type stars shouldn't produce X-rays
- F/G/K/M Magnetic field
- A typically no generation mechanism
- O/B Strong stellar winds

• X-ray detection of A-stars due to unresolved companion?

UNEXPLAINED X-RAY DETECTION

- Late B- and early A-type stars shouldn't produce X-rays
- F/G/K/M Magnetic field
- A typically no generation mechanism
- O/B Strong stellar winds

• X-ray detection of A-stars due to unresolved companion?

X-RayControlX-ray Active Companion
$$58.7 \pm 9.7\%$$
 $20.0 \pm 4.9\%$

FUTURE WORK

- Theoretical predictions of the intermediate-mass binary formation processes
- Influence of companions upon debris disks
- Interferometry/spectroscopy to probe tight separations
- Extreme-AO to search for brown dwarfs/giant planets within 10s of AU

Circum-binary disk (NASA/JPL-Caltech)

Extreme-AO Simulation (LLNL)

CONCLUSIONS

- Multiplicity of A-type stars ~ 40%
- Peak of separation distribution at 350 AU
- Mass-ratio skewed towards lower-mass companions
- Unresolved low-mass companions likely source of X-ray emission

