Triggered Star Formation and Young Stellar Population in Bright-Rimmed Clouds

Rumpa Choudhury

Indian Institute of Astrophysics Bangalore, India

Collaborators

Prof. H. C. Bhatt (IIA, Bangalore) & Dr. Bhaswati Mookerjea (TIFR, Mumbai

Rumpa Choudhur

Influence of massive stars on subsequent star formation

Rumpa Choudhur

2 Observation & Data Reduction

Rumpa Choudhur

Bright-Rimmed Clouds

Figure 2. The structure of a blister H II region. This is a ground-based image of the Eagle Nebula, M16, obtained with the 1.5-m telescope at Palomar Observatory.

Hester & Desch (2005)

- Location: found at the borders of HII regions
- Morphology: bright-rim facing the ionizing sources and a tail along the radially outward direction from the central stars
- Propagation of ionization/shock fronts, produced by massive stars, into the surrounding molecular material compress the gas which lead to the formation of dense cores
- Cores subsequently collapse to form a new generation of stars

Bright-Rimmed Clouds

Figure 2. The structure of a blister H II region. This is a ground-based image of the Eagle Nebula, M16, obtained with the 1.5-m telescope at Palomar Observatory.

Hester & Desch (2005)

- Location: found at the borders of HII regions
- Morphology: bright-rim facing the ionizing sources and a tail along the radially outward direction from the central stars
- Propagation of ionization/shock fronts, produced by massive stars, into the surrounding molecular material compress the gas which lead to the formation of dense cores
- Cores subsequently collapse to form a new generation of stars
- Observational evidence: sequential star formation

The Origin of Stellar Masses, 18-22 October, Tenerife

Signatures of ongoing star formation: luminous IRAS source IRAS 21391+5802, H₂O maser sources, molecular outflows, HH outflows, NIR embedded clusters, H α emission line stars...(Kun et al., 2008)

The Origin of Stellar Masses, 18-22 October, Tenerife

Observations & Data Reduction

The Origin of Stellar Masses, 18-22 October, Tenerife

Observations & Data Reduction

- IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24 μm) observations were retrieved from the Spitzer Space Observatory archive (Program ID 30050: Fazio et al.)
- Spitzer Mopex and custom IDL routines

Observations & Data Reduction

- IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24 μm) observations were retrieved from the *Spitzer Space Observatory* archive (Program ID 30050: Fazio et al.)
- Spitzer Mopex and custom IDL routines

- Optical photometric and spectroscopic observations were obtained using *HFOSC* instrument mounted on 2m Himalayan Chandra Telescope, Hanle, India
- IRAF and custom IDL routines

http://www.iiap.res.in/centers/iao

Results & Analysis

The Origin of Stellar Masses, 18-22 October, Tenerife

Classification of YSOs

Class O (main accretion phase) Size: 10 000 AU t = 0

Class I (late accretion phase) Size: $8\,000$ AU t = 10^4 - 10^5 yr

Class II (optically thick discs) Size: 200 AU t = 10^5 - 10^6 yr

Class III (debris discs?) Size: 200 AU $t = 10^6-10^7$ yr

The Origin of Stellar Masses, 18-22 October, Tenerife

Classification of YSOs

 IRAC and MIPS color-color diagrams are used to *identify* and characterize the *evolutionary stages* of YSOs

Fang et al. (2009) Gutermuth et al. (2009) Hartmann et al. (2005) Megeath et al. (2004) Muzerolle et al. (2004)

Classification of YSOs

• IRAC and MIPS color-color diagrams are used to *identify* and characterize the *evolutionary stages* of YSOs

Total MIR sources: 110 Class 0/I: 10 Class I: 3 Class I/II: 13 Class II: 14 Transitional disk objects: 19

Fang et al. (2009) Gutermuth et al. (2009) Hartmann et al. (2005) Megeath et al. (2004) Muzerolle et al. (2004)

Spectroscopy of YSOs

• Medium resolution (\sim 7Å) spectra were obtained for relatively bright and optically visible YSOs

Rumpa Choudhury

Spectroscopy of YSOs

• Medium resolution (\sim 7Å) spectra were obtained for relatively bright and optically visible YSOs

Rumpa Choudhury

Spectral Classification

 Spectra were classified using a modified version of SPTCLASS code (Hernández et al. 2004) optimized for HFOSC spectra

• Full width of the H α emission line at 10% of the peak intensity (H α [10%]) > 270 km s⁻1 \Rightarrow accreting CTTS (White & Basri 2003)

ID	Alt. ID	Date (dd/mm/uar)	W _λ	Sp. Type	T _{eff}	Type	$H\alpha[10\%]$	log Mac
BRC 38 1 MIR-5		05/10/08	-12.93	M3+1	3470	CTTS	312.23	-9.86
		10/10/00	-16.24	111.7 12 1	5470	crit	205 20	-10.90
	DDC 38 2	05/10/08	-85.22	MI + I	3720	CTTS	250.70	-0.40
	DICC	10/10/09	-106.1		5120	0110	244 53	-10.52
MIR-7	BBC 38 3	06/10/08	-19.0	M1+2	3720	CTTS	476.25	-8 27
	Dice So S	10/10/09	-18.75		5120	erro	463.50	-8 39
MIR-11	BRC 384	10/09/08	-7.30	MI + 2	3720	WTTS	405.50	
		18/07/09	-11.29					
MIR-29	BRC 38 5	06/09/08	-3.42	M1 + 2	3720	WTTS		
	Dice 50 5	03/11/08	-8.84		5120		469.90	-8.33
		24/08/09	-1.89					
		09/11/09	-2.74					
MIR-31	BRC 38 6	06/09/08	-53.47	K2 ± 1	4900	CTTS	384.43	-9.16
		24/08/09	-57.32				442.02	-8.60
		09/10/09	-60.5				382.26	-9.18
MIR-32	BRC 38 7	10/09/08	-33.12	M2 ± 1	3580	CTTS	368.03	-9.32
		12/09/09	-15.78				220.59	-10.75
MIR-43	GFG 62	18/07/09	-3.516	M1 ± 1	3720	WTTS		
MIR-45	BRC 38 9	06/09/08	-37.43	$K4 \pm 1$	4590	CTTS	281.09	-10.16
		03/11/08	-41.22				389,74	-9.11
		24/08/09	-56.33				273.39	-10.24
MIR-49	BRC 38 10	04/11/08	-13.5	$M0 \pm 1$	3850	CTTS	430.70	-8.71
		09/10/09	-30				450.55	-8.52
MIR-64	BRC 38 11	10/09/08	-31.46	$K5 \pm 1$	4350	CTTS	239.20	-10.57
		12/09/09	-25.06					
MIR-76	GFG 81	18/07/09	-3.261	$K7 \pm 1$	4060	WTTS		
		10/10/09	-3.135					
MIR-80	BRC 38 12	24/08/09	-8.404	$M4 \pm 1$	3370	WTTS		
BRC 38 17		11/11/09	-119.	$M3 \pm 2$	3470	CTTS	205.29	-10.90

• Mass accretion rate $(\log \dot{M}_{ac}) = -12.89 (\pm 0.3) + 9.7 (\pm 0.7) \times 10^{-3} \text{ H}\alpha$ [10%] (Natta et al. 2004).

Optical Colour-Magnitude Diagram

 Isochrones from Siess et al. (2000) assuming a distance of 750 pc (Matthews 1979)

 Ages: 1 to 5 Myr and masses: 0.3 to 2.2 M⊙ for Class II YSOs [with(out) Hα]

H α Emission: SFO 38

 The bright-rim structure is quite prominent in the continuum-subtracted Hα line image

 Hα emission line image is asymmetric w.r.t. HD 206267

Rumpa Choudhur

Choudhury et al. (2010)

H α Emission: SFO 38

Choudhury et al. (2010)

- HD 206773 a B0V type star at a projected distance of 7.6 pc
- Stromgren radius of a BOV type star would be $\simeq 8.5$ pc assuming $n_H \sim 10^7 \text{ m}^-3$
- HD 206773 could be another potential ionizing source for SFO 38

The Origin of Stellar Masses, 18-22 October, Tenerife

The Origin of Stellar Masses, 18-22 October, Tenerife

The Origin of Stellar Masses, 18-22 October, Tenerife

- Most of the Class II YSOs are situated at the rim
- Class I/II and Class I YSOs are situated behind the rim
- Class 0/I YSOs are situated at the dense core

Rumpa Choudhur

Choudhury et al. (2010)

Choudhury et al. (2010)

- Most of the Class II YSOs are situated at the rim
- Class I/II and Class I YSOs are situated behind the rim
- Class 0/I YSOs are situated at the dense core
- A spatio-temporal gradient along the directions of both HD 206267 and HD 206773

Rumpa Choudhur

The Protostellar Cluster at IRAS 21391+5802

Choudhury et al. (2010) SED fitting tool: Robitaille et al. (2007)

- IRAS 21391+5802 in SFO 38 can be resolved into three components, named as BIMA 1, BIMA 2, and BIMA 3 (Beltrán et al. 2002)
- MIR-50 and 54 are identified as the mid-infrared counterparts of BIMA 2 and BIMA 3
- MIR-50 (BIMA 2) is a Class 0/I intermediate-mass YSO with mass of 5.97 M☉. Neri et al. (2007) have shown BIMA 2 as having three components
- MIR-54 is a Class 0/I low-mass YSO with mass of 1.5 M⊙.
- The SED models derive the age of both these sources to be $\sim 10^5$ yr

 Triggered or influenced star formation by the massive stars?

Choudhury et al. (2010)

Choudhury et al. (2010)

 Triggered or influenced star formation by the massive stars?

- UV radiation merely exposes the young stars formed inside the globule by photoevaporation
- The observed evolutionary sequence of YSOs is due to the modification of the protoplanetory disks of YSOs by the intense UV radiation

Choudhury et al. (2010)

- Elongated distribution of YSO along two different axes from the bright-rim to the dense core
- Typical radius of influence of O-type stars is found to be
 <1 pc (Balog et al. 2007; Hernández et al. 2008). The mean projected distance of SFO 38 from the nearby OB-type star is ~9pc
- Spatial distribution of YSOs in SFO 38 signifies the temporal evolution ⇒ observational evidence for sequential star formation

Choudhury et al. (2010)

 Temporal feasibility of shock waves propagation

Shock propagation speed
0.1-0.3 km s⁻¹ is consistent with the values obtained from numerical simulation (Miao et al. 2006)

Spatial Distribution of YSOs in SFO 36 and SFO 37

SFO 36: Sicilia-Aguilar et al. (2006)

SFO 37: Ikeda et al. (2008)

Spitzer View of Star Formation in SFO 37

IRAC Color-Color Diagram

Spatial distribution of YSOs in SFO 37

Choudhury et al., 2010a, (in preparation)

Conclusion

- Star formation in SFO 38 have been triggered by massive OB-type stars
- Low to intermediate mass YSOs are formed in SFO 38
- Spatio-temporal gradient in the spatial distribution of YSOs advocate for sequential star formation

Rumpa Choudhur

References I

- Balog, Z., Muzerolle, J., Rieke, G. H., et al. 2007, ApJ, 660, 1532
- Beltrán, M. T., Girart, J. M., Estalella, R., Ho, P. T. P., & Palau, A. 2002, ApJ, 573, 246
- Choudhury, R., Mookerjea, B., & Bhatt, H. C. 2010, ApJ, 717, 1067
- Fang, M., van Boekel, R., Wang, W., et al. 2009, A&A, 504, 461
- Gutermuth, R. A., Megeath, S. T., Myers, P. C., et al. 2009, ApJS, 184, 18
- Hartmann, L., Megeath, S. T., Allen, L., et al. 2005, ApJ, 629, 881
- Hernández, J., Calvet, N., Briceño, C., Hartmann, L., & Berlind, P. 2004, AJ, 127, 1682
- Hernández, J., Hartmann, L., Calvet, N., et al. 2008, ApJ, 686, 1195
- Hester, J. J. & Desch, S. J. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 341, Chondrites and the Protoplanetary Disk, ed. A. N. Krot, E. R. D. Scott, & B. Reipurth, 107–+
- Ikeda, H., Sugitani, K., Watanabe, M., et al. 2008, AJ, 135, 2323
- Matthews, H. I. 1979, A&A, 75, 345
- Megeath, S. T., Allen, L. E., Gutermuth, R. A., et al. 2004, ApJS, 154, 367
- Miao, J., White, G. J., Nelson, R., Thompson, M., & Morgan, L. 2006, MNRAS, 369, 143
- Muzerolle, J., Megeath, S. T., Gutermuth, R. A., et al. 2004, ApJS, 154, 379
- Natta, A., Testi, L., Muzerolle, J., et al. 2004, A&A, 424, 603
- Neri, R., Fuente, A., Ceccarelli, C., et al. 2007, A&A, 468, L33
- Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, K. 2007, ApJS, 169, 328
- Sicilia-Aguilar, A., Hartmann, L., Calvet, N., et al. 2006, ApJ, 638, 897
- Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593
- White, R. J. & Basri, G. 2003, ApJ, 582, 1109

Thank You

The Origin of Stellar Masses, 18-22 October, Tenerife