CONSTRAINING THE EVOLUTIONARY MODELS Dynamical masses of the brown dwarf binary: ɛ Indi Ba, Bb

Cátia Cardoso (U. Exeter) & Mark McCaughrean (U. Exeter / ESA)

Robert R. King Laird M. Close Ralf – Dieter Scholz Wolfgang Brandner Rainer Lenzen Nicolas Lodieu Hans Zinnecker Rainer Köhler Quinn Konopacky Frédéric Pont

U. Exeter Steward Observatory AIP MPIA MPIA IAC AIP ZAH UCLA U. Exeter

UNIVERSITY

E

Brown Dwarfs

Theorized by Kumar in 1963 and Hayashi & Nakano also in 1963. Observed in 1995 by Rebolo et al. and Nakajima et al. also 1995.

T. Nakajima and S. Kulkami (CalTech), S. Durrance and D. Golimowski (JHU), NASA

Gliese 229B $M \sim 40 M_{Jup}$

T7

d ~ 5.77 pc

Parent star: M1

Nakajima et al. also 1995

ε Indi Ba, Bb

Dynamical masses of brown dwarfs binaries

• Binary systems are very important because they allow us to determine dynamical masses in a model independent way for objects with the same age, distance and metallicity.

• Ambiguity temperature/luminosity vs age/mass

• Calibrate evolutionary models, inner structure and atmospheric models

Dynamical masses of brown dwarfs binaries

Zapatero Osorio et al. 2004	Gl 569b AB	M8.5 & M9
Bouy et al. 2004	2MASS J0746425+2000321	L0 & L1.5
Liu et al. 2008	2MASS J1534 2952AB	T5.0 & T5.5
Dupuy et al. 2008, 2009, 2010	DM for several BD systems	See talk from T. Dupuy next
Konopacky et al. 2010	DM for 15 systems, 10 new ones	

ε Indi A: K4.5V star ε Indi B discovered by Scholz et al. (2003) Resolved as a binary by McCaughrean et al. (2004) & Volk et al. (IAU circular 8188)

ε Indi Ba, Bb

- Proper motion ~ 4.7 arcsec/year [2]
- Closest known brown dwarfs to Earth, at 3.6224 ± 0.0037pc [1]
- Projected separation 1500AU from ε Indi A [2]
- T1 and T6 [3]
- Age ~ 0.8 2.0 Gyrs from indirect age indicators [4]

[1] Van Leeuwen (2007); [2] Scholz et al. (2003); [3] McCaughrean et al. (2004); [4] Lachaume et al. (1999)

Benchmark Object

• Orbits a K4.5V star:

- Very well constrained distance
- Well constrained metallicity
- Reasonably constrained age
- Closest brown dwarf binary to Earth:
 - Very bright objects
 - AO system
 - Absolute motion of barycentre against a network of background stars
 - Short period ~ 15 years
 - Well resolved

• Smith et al. 2003

- R = 50000, near IR spectroscopy
- $v \sin i = 28 \pm 3 \text{ Km/s}^{-1}$

predicted maximum differential radial velocity ~ 5 km/s

- Audard et al. 2005
 - Radio (ATCA) & X-Ray (Chandra) imaging
 - Null detections: consistent with ultracool BDs
- Roelling et al. 2004 & Mainzer et al. 2007
 - Combined spectrum of ε Indi B with IRS on Spitzer
- Sterzik et al. 2005
 - Mid-IR photometry from VLT/VISIR
- Kasper et al. 2009
 - Low resolution near-IR spectroscopy
- King et al. 2010: "ε Indi Ba, Bb: a detailed study"

VRIzJHK_SLM_{NB} Photometry

Fig. 1. From left to right and top to bottom, FORS2 *VRIz* and ISAAC *JHK*_S*LM*_{NB} images of ε Indi Ba, Bb. Each image is a 4" × 4" sub-section of the full image. North is up, East left. The object to the south-east of the *V*-band image is a faint galaxy not seen in the other pass-bands. The *L*-band profiles are seen to be slightly elliptical. The *V* and *M*_{NB}-band images are the stacked images of all observations in those pass-bands.

King et al. 2010

Spectroscopy: optical - thermal IR

ε Indi Ba, Bb

- Kepler's 3rd Law
 - Period
 - Semi-major axis

$$m_1 + m_2 = (4\pi^2 a^3)/(GP^2)$$

Credit image: www.astro.uvic.ca/~tatum/celmechs/celm17.pdf

• ESO VLT NACO adaptive optics data in J, H, K_s bands

 Total 34 epochs between May 2004 and September 2010

• More than half orbit covered

ESO VLT NACO adaptive optics J, H & K_s composite image. McCaughrean et al., A&A (2004)

Results

System mass = $120.9 \pm 0.3 M_{Jup}$

Stochastic error: $\pm 0.2\%$ Systematic errors: $\pm 0.2\%$ NACO pixel scale [1] $\pm 0.1\%$ ϵ Indi A distance [2] $\pm 0.2\%$ line of sight separation to ϵ Indi A [3]

[1] Trippe et al. 2008; [2] van Leeuwen 2007; [3] Leinert et al.1993

FORS2 R~1000 optical spectrum of ε Indi Ba (upper line) and the BT-Settl (Allard et al. 2003) atmospheric model fit (lower line) (King et al. 2010). The lack of Li absorption at 6708°A indicates a mass in excess of ~ 0.06 M \odot (Burke et al. 2004): given the observed luminosity, this suggests an age > 3 Gyr using the Baraffe et al. (2003) evolutionary models.

Absolute Astrometry

Credit image: Zeilik & Smith

- Definition of centre of mass: m₁r₁=m₂r₂
 - To have the individual masses:

$$m_1/m_2 = (r_2 \sin i)/(r_1 \sin i)$$

Credit image: www.astro.iag.usp.br/~jane/aga215/aula08/cap8.htm

Absolute Astrometry

• ESO VLT FORS2 data in I – band

• Total of 43 epochs between May 2005 and September 2009

• FORS2 field of view: 8.6 x 8.6 arcmin

FORS2 field of view, May 2005

• ε Indi B in blue

- 2MASS stars (green)
 - 16 CCD1 (max)
 - 24 CCD2 (max)
- Background stars (red + green)
 - 65 CCD1
 - 47 CCD2

Cátia Cardoso

ε Indi Ba, Bb

Results

MBa / Msystem = 0.61 ± 0.02

M (ε Indi Ba) = 73.7 ± 2.4 M_{Jup} M (ε Indi Bb) = 47.1 ± 2.4 M_{Jup}

Model independent -

Constrain evolutionary models & & atmospheric models of T dwarfs

Cátia Cardoso

Cátia Cardoso

Cátia Cardoso

Future Work

Asteroseismology study of ε Indi A for better constraint on age.

System mass = $120.9 \pm 1.0 M_{Jup}$

M (ε Indi Ba) = $73.7 \pm 2.4 M_{Jup}$ M (ε Indi Bb) = $47.1 \pm 2.4 M_{Jup}$

MRTN-CT-2006-035890

