

Low-Mass Brown Dwarfs and the Initial Mass Function

Andrew Burgess

aburgess@obs.ujf-grenoble.fr

Jerome Bouvier & Estelle Moraux

Research supported by the Marie Curie Research Training Network "CONSTELLATION" under grant no. MRTN-CT-2006-035890

Thursday, 21st October 2010

Andrew Burgess

Overview

-Episode 1: IC 348

- Selection and Candidates
- Membership and Initial Mass Function

-Episode 2: IC 4665

- Calibration and Analysis
- Summary

Thursday, 21st October 2010

Andrew Burgess

Objective

- Constrain the low mass end of the Initial Mass Function in IC 348 and IC 4665:
 - IC 348 star forming region:
 - T dwarfs later than spectral type ~T3
 - IC 4665 open cluster:
 - low mass objects earlier than spectral type ~L3
- How do the lowest mass objects form?
- Why are different clusters observed?

Thursday, 21st October 2010

Andrew Burgess

IC 348

Image: Adam Block and Tim Puckett

Thursday, 21st October 2010

Andrew Burgess

IC 348

Clustered star forming region

- 03^h44^m34^s +32°09′8″ (J2000) in Perseus
- 300+/-15pc, ~40pc in front of Per OB2 association
- ~1-3Myr, low proper motion; ~2 < A_v < 20mags
- IMF complete to $\sim 35M_{Jup}$ (though for Av<4mag)
- WIRCam IR survey to find the lowest mass objects

Cernis 1993, Herbig 1998, Herbst 2008, Luhman et al. 2003, Muench et al. 2003, Scholz et al. 1999.

Thursday, 21st October 2010

Andrew Burgess

Field of View

Thursday, 21st October 2010

Andrew Burgess

Methane Selection

 CH_4 on- CH_4 off colour (1.69µm-1.58µm) vs SpT

L & T 5Gyr field dwarf spectra - convolved

Distance corrected

SpT latens with colour

e.g. T3 => ~0.4mag

3 selected candidates

Thursday, 21st October 2010

Andrew Burgess

Methane Candidates

Thursday, 21st October 2010

Andrew Burgess

Methane Candidates

Dereddened to 3Myr COND model

Younger objects are brighter than field objects from larger radii

Comparison: ~T6 S Ori 70, 1-8Myr, 350pc

IC348_2 close to S Ori 70

Thursday, 21st October 2010

Andrew Burgess

Candidate Rejection

Inconsistent location

- IC348_CH4_1 & 3 rejected
- Far too blue in z'-J
- IC348_CH4_2 upper limit
- Identity unknown for rejected candidates

Luhman et al 2006, Zapatero Osorio et al. 2002, 2008.

Thursday, 21st October 2010

Andrew Burgess

IMF

- One candidate with mass estimated $<7M_{Jup}$ (± 50%)
- ~420 members in IC 348
- Used log-normal and power law IMF extrapolated to 1-10M_{Jup} (1.6-4 expected)
- Power law overestimates ~x10 for IC 348 (25±16 expected)
- This candidate is consistent with lognormal extrapolation to low mass domain for IC 348

Thursday, 21st October 2010

Andrew Burgess

IC 348 Summary

"Young T-Dwarf Candidates in IC 348" published: Burgess et al. 2009 (2009A&A...508..823)

- Three objects based on methane colours detected
- Two rejected by too blue z'-J colours unknown idents
- One very likely a member of IC 348 and consistent for a 3Myr old, ~T6 Dwarf
- Among lowest-mass T-dwarf detected so far

Results support the extrapolation of the log-normal IMF down to a few M_J

Thursday, 21st October 2010

Andrew Burgess

Image: Stefan Binnewies and Josef Pöpsel

Thursday, 21st October 2010

Andrew Burgess

IC 4665

Open cluster

- 17^h46^m18^s +05°43′0″ (J2000)
- 350+/-15pc
- ~30-40Myr, low proper motion
- Average extinction $A_v \sim 0.17$ mags
- Good place to study the IMF
- Y J H Ks (short+long) (21,20.5,19.75,18.5mag)
- 0.012M/Ms (YJH) and 0.015M/Ms (Ks)
- 10 fields + 2 control fields

Thursday, 21st October 2010

Andrew Burgess

Field of View

Thursday, 21st October 2010

Andrew Burgess

Candidates

- Calibration onto UKIDSS Y offset range 0.33mag
- Selection (from 360,000)
 - Use BT-Settl 30 & 50 Myr isochrones
 - 6 CMDs
 - 15 COLDs Y-J/J-H etc
 - Y-J colour most constraining (~4500 objects)
 - J-H least (~140k objects)

Thursday, 21st October 2010

Andrew Burgess

CMD Selection - 2278

Thursday, 21st October 2010

Andrew Burgess

COLD Selection - 1107

Thursday, 21st October 2010

Andrew Burgess

Selection

- Filtering 608:
 - Flux radius <5.0
 - Completeness
 - No sat/IMA flags
 - No duplicates
- 590
 - Visually inspected with criteria
 - 510 'OK'
 - 178 'GOOD'

Thursday, 21st October 2010

Andrew Burgess

Selection

- Empirical selection (Hewett+2008)
 - YJ/JH and JH/HK empirical locations
 - 63 L, 485 M-dwarf
 'OK'
 - 3 L, 164 M-dwarf 'GOOD'

Thursday, 21st October 2010

Andrew Burgess

Further Prospects

- IC4665:
 - Contamination (at least 20%), further spectral type analysis, IMF, *Spitzer* data, spectroscopy
 - Collaboration with the IAC, N. Lodieu
- IC 348:
 - Spectroscopy of all three candidates
 - Ascertain identity of 2 rejected
 - Full census using zJHK data to extend confirmed IMF to masses < 30Mj

Thursday, 21st October 2010

Andrew Burgess

Conclusions:

IC348: 1 good T5.5 candidate: supports the extrapolation of the log-normal IMF down to a few M_J

IC 4665: Empirical candidate selection also required and further analysis

Thursday, 21st October 2010

Andrew Burgess