The earliest phases of high-mass star formation

Sylvain Bontemps (LAB/CNRS - Bordeaux Obs./University)

Open Questions

- Origin of the stellar masses?
- How do massive stars form?
- Relationship with cluster formation?

The initial conditions of massive star formation

- Fragmentation (CMF, evolution?)
- Kinematics (turbulent support, flows)
- Mass segregation, which stars form first?
- Accretion rates and early evolution.

with T. Csengeri, N. Schneider, F. Motte, P. Hennebelle, R. Klessen, C. Federrath, F. Gueth, HOBYS and ATLASGAL consortia.

October 19th, 2010

Origin of massive stars?

- Jeans or Bonnor-Ebert masses (pure gravitation?).
- Gravo-turbulent fragmentation (shocks) (Klessen et al. 00; Vazquez-Semadeni et al. 00; Padoan & Nordlund 02; others ...).

Extreme, discriminating case or specific process?

- How to collapse 20 to 200 M_{Jeans}?
- [Radiation pressure above 10 M_{\odot} can stop accretion/infall.]
- Cluster formation and collective effects/feedbacks.
- Slow evolution of turbulence supported massive dense cores toward collapse (McKee & Tan 2003; Krumholz & Mckee 2005; ...).
- Fast gravo-turbulent fragmentation ($\sim \tau_{\rm ff}$) + competitive accretion at the center of proto-clusters or hierarchical fragmentation (Bonnell et al. 2001; Vazquez-Semadeni et al. 07; ...).
- Fast evolution and small-scale turbulent support (Hennebelle & Chabrier 2009).

FIR surveys now...

October 19th, 2010

Core Mass Function in the high-mass regime

Not easy to get the statistics at the required spatial resolution:

- Beuther & Schilke 2004, Science 303, 1167.

An unclear picture for the scales investigated and separations?
Beuther et al. (2007); Leurini et al. (2007); Rodon et al. (2008); Brogan et al. (2010); Rathborne et al. (2007, 2009), Zhang et al. (2009, 2010).

... massive star-forming regions at different (large) distances.

Motte, Bontemps, Schilke et al. (2007):

- 129 massive dense cores (MDCs)
- 33 are more massive than 40 M_{\odot} .
- All IR-quiet are bright in SiO.
- Short formation timescale.

IRAM PdBI: 6 massive IR-quiet MDCs: - 60 to 200 M_{\odot} , down to 1700 AU.

(b1)

- 1.3mm / 3mm continuum.
- $H^{13}CO^{+}(1-0)$ line.

Fragmentation in MDCs in Cygnus X

PdBI continuum 3.5 mm

8

High-spatial resolution observations:

- Beuther et al. (2007); Leurini et al. (2007); Rodon et al. (2008); Brogan et al. (2010); Rathborne et al. (2007, 2009), Zhang et al. (2009, 2010).

... massive star-forming regions at different (large) distances.

High-spatial resolution observations :

- Beuther et al. (2007); Leurini et al. (2007); Rodon et al. (2008); Brogan et al. (2010); Rathborne et al. (2007, 2009), Zhang et al. (2009, 2010).

High-spatial resolution observations :

- Beuther et al. (2007); Leurini et al. (2007); Rodon et al. (2008); Brogan et al. (2010); Rathborne et al. (2007, 2009), Zhang et al. (2009, 2010).

High-spatial resolution observations :

Beuther et al. (2007); Leurini et al. (2007); Rodon et al. (2008); Brogan et al. (2010); Rathborne et al. (2007, 2009), Zhang et al. (2009, 2010); Longmore et al..

Fragment mass

$$M_{MM1} = 14M_{sun}$$

$$M_{MM2} = 7M_{sun}$$

$$M_{MM3} = 5M_{sun}$$

Fragment separation ≻ ~0.02pc (4000 AU)

October 19th, 2010

Fragmentation in MDCs in Cygnus X

- IMF/SFE 30%: M_{max} = 3.3 M_{\odot} (80 stars).
- Not a normal gravo-turbulent fragmentation.
- Not monolithic collapse either.
- In 3 cores: more than $\sim 30\%$ in 2 protostars.
- Primordial mass segregation.

Bontemps, Motte, Csengeri, Schneider (2010), A&A in press, arXiv0909.2315

High-spatial resolution observations :

- Compact cores at 1000s AU scale of typical high-mass star masses.
- Size and separations similar to low-mass protostellar envelopes in clusters.
- In massive dense cores (100 M_{sun} in 0.1 pc size).
- In Cygnus X: three MDCs dominated by massive protostars.
- No mass to form low-mass stars.
- A primordial mass segregation observed.
- Origin of these higher masses than M_{Jeans}?

- Kinematics ...

Longmore et al

Kinematics in massive clumps/cores

The collapsing, rotating toroids:

- Beltran et al. (2004, 2006); Furuya et al. (2010).

Dense gas at high resolution $(H^{13}CO^+)$

- MDCs seen in $H^{13}CO^+$ (1-0).
- But trace more the surrounding gas.

Csengeri, Bontemps, Schneider, et al. (2010), A&A in press, arXiv1009.0598

October 19th, 2010

Dense gas at high resolution (H¹³CO⁺)

- MDCs seen in $H^{13}CO^+$ (1-0).
- But trace more the surrounding gas.
- Not very simple geometries.

Csengeri, Bontemps, Schneider, et al. (2010), A&A in press, arXiv1009.0598

October 19th, 2010

Level of turbulent support

- Level of micro-turbulence cannot support the MDCs.
- These MDCs have indications of global collapse.
- They are not in equilibrium (Mass/ $M_{vir} > 1$).

MDCs dominated by flows

Kinematics in massive clumps/cores

The collapsing, rotating toroids:

- Beltran et al. (2004, 2006); Furuya et al. (2010).

Velocity Discontinuities:

- Peretto et al. (2006); Rodon et al. (2008); Galvan-Madrid et al. (2010)

Galvan-Madrid et al. (2010)

Flows at large scales in the DR21 ridge

October 19th, 2010

Flows at large scales in the DR21 ridge

Schneider, Csengeri, Bontemps, Motte, Hennebelle, Federrath, Klessen (2010), A&A in press, arXiv1003.4198

- Global collapse of the ridge.
- Sub-filaments flowing down on the ridge.

DR21(OH): a clump in hierarchical fragmentation

Jec [J2000]

et al. (2010), A&A Letter, in prep

Talk

Timea

- The clump splits into 3 MDCs 0.1 0.2 pc size.
- Dynamic dominated ($\tau_{cross} > \tau_{ff}$).
- Individual protostars at the scale of 0.02 pc.

Conclusions

Fragmentation

- Individual OB star precursors.
- Primordial mass segregation observed.
 - Diversity (evolution, initial cdtions ?)

Kinematics and turbulent support

- Turbulent support is not enough at the scale of MDCs.
- If it acts, it is at the proto-stellar envelope scale (< 0.03 pc).
- Higher (?) V_{rms} at small scale/high density.

ightarrow

- MDCs forming massive star are not in equilibrium.
- Flows dominates evolution from 10 to 0.03 pc.
- No flow favoring higher mass cores observed.
- Observed hierarchical fragmentation for cluster formation.

- HOBYS: survey of 0.5 to 3 kpc 22 deg² 70 to 500 μ m.
- Hi-GAL: the whole galactic plane (240 deg² fast scanning 70 to 500 μ m).

Survey at millimeter wavelength

- ATLASGAL: 1st complete survey, APEX, ESO large program.
- BOLOCAM/CSO: only north, reduced spatial resolution.
- SCUBA2/GPS: only north (to be started in 2011).

Herschel imaging survey of **OB** Young Stellar objects

A guaranteed time key programme with Herschel Space Observatory @@888

HOBYS

F. Motte, A. Zavagno, S. Bontemps SPIRE consortium SAG3 (85 hrs) - PACS Marseille (19 hrs) - HSC (22 hrs) and the HOBYS consortium

- Identify and characterise the precursors of OB stars
 - High-mass analogues of prestellar cores do they exist?
 - Massive IR-quiet protostellar dense cores
 - > Massive IR-bright protostellar dense cores
- Measure core/envelope mass and bolometric luminosity
 - Constrain submm component of SED
 - Build an evolutionary diagram
 - Estimate lifetime of each evolutionary stage
- Assess the importance of triggering
 - By comparing well-behaved HII regions to more common HMSF regions (see talk: Zavagno)
 http://hobys-herschel.cea.fr

October 19th, 2010

- All massive GMCs at less than 3 kpc.
- Motte et al. (2010); Schneider et al. (2010); Hennemann et al. (2010); Di Francesco et al. (2010)
- Rosette Molecular Cloud: 1600 pc; $3.5 \times 10^5 M_{\odot}$

PACS + SPIRE 70, 160, 250 µm

October 19th, 2010

Rosette Molecular Cloud - HOBYS - Hennemann et al. (2010)

Rosette Molecular Cloud - HOBYS - Hennemann et al. (2010)

Herschel-only protostars

Rosette HOBYS - Hennemann et al. (2010)

- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

(2010)

- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

October 19th, 2010

- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

Tracks: toy model

(1996)

Hennemann et al.

(2010)

Galaxy wide surveys

- <u>ATLASGAL</u>: APEX Telescope Large Area GALactic survey
- <u>HOBYS</u>: Herschel imaging surveys of OB Young Stellar objects
- <u>Hi-GAL</u>: Herschel imaging survey of the whole GP.

ATLASGAL

Schuller, et al. (2009) A&A 504, 415

- Large program ESO/APEX (2008-2009).
- APEX/LABOCA @ 870 μ m.
- 400 hrs = 240 (MPG) + 40 (Chili) + 120 (ESO).
- 360 squ. deg. (lon=+- 60 deg; lat = +- 1.5 deg).