The Stellar Low-Mass LWiz SDSS Observations of 15 Million L D wartis

John Bochanski (Penn State)
Origins of Stellar Masses
October 21st, 2010

Suzanne Hawley (UW), Kevin Covey (Cornell), Andrew West (BU), Neill Reid (STScl)

Talking Points

- The field is a good place to measure the IMF Small samples are no longer the norm for low-mass stars M dwarfs are important tracers of Galactic structure and kinematics

The field is a good place to measure the IMF of M dwarfs.

Clusters
 VS.
 The Field

The field is a good place to measure the IMF of M dwarfs.

Clusters

VS.
The Field

The field is a good place to measure the IMF of M dwarfs.

Clusters

VS.
The Field

Sloan Digital Sky Survey

Latest Data Release (DR7)

- 357 million photometric objects - Over 30 million M dwarfs (Bochanskie e al. 2010)
- 1.6 million spectra - 70,000 M dwarfs (West et al. 2010)
- SLoWPOKES - 1,300 binaries (Dhital et al. 2010)

SDSS Sky Coverage - Galactic Coordinates

Previous Low-Mass Field LFs and MFs

Local Stars - Wide sky coverage of

 nearby stars(e.g. " 8 pc sumple" - Reid \& Gizis 1997, PMSU - Reid, Gizis \& Hawley 2002)

$$
\mathrm{LF}=\mathrm{dN} / \mathrm{dL}
$$

(I) $M F=d N / d M \propto M^{-\alpha}$

Pencil Beams- Deep photometry of small solid angles
(e.g. Martini \& Osmer 1998, Zheng et al. 2001)

Previous Low-Mass Field LFs and MFs

SDSS offers a fundamentally different dataset.

Luminosity Funcion Issues

- Contamination - Only count low-mass stars Covey et al. 2008 found < 2-3\%
- Accurate distances are necessary New Color-Magnitude Relations (Bochanski et al. 2010)
- Galactic structure needs to be taken into account Measured simultaneously (also see Juric et al. 2008)

Luminosity Function Issues

Luminosity Funcion Issues

- Contamination - Only count low-mass stars Covey et al. 2008 found < 2-3\%
- Accurate distances are necessary New Color-Magnitude Relations (Bochanski et al. 2010)
- Galactic structure needs to be taken into account Measured simultaneously (also see Juric et al. 2008)

Luminosity Funcion Issues

- Contamination - Only count low-mass stars Covey et al. 2008 found < 2-3\%
- Accurate distances are necessary New Color-Magnitude Relations (Bochanski et al. 2010)
- Galactic structure needs to be taken into account Measured simultaneously (also see Juric et al. 2008)

Bochanski et al. 2010

Bochanski et al. 2010

Bochanski et al. 2010

Current \& Future Surveys

PanSTARRS (Kaiser et al. 2004) UKIDSS (Lawrence et al. 2007) VISTA (Emerson et al. 2004)
Skymapper (Keller et al. 2007)
GAIA (Perryman et al. 2003)
JANUS (Burrows et al. 2010)
LSST (Ivezic et al. 2008)

Pan-STARRS

Conclusions

- The field is a good place to measure the IMF Small samples are no longer the norm for low-mass stars It is important to place large samples of M dwarfs in a Galactic context

Velocity Dispersions

Measured by many groups using SDSS data

Constrains local mass density and Galactic potential

Influenced by Galactic heating mechanisms

Fuchs et al. 2009

Velocity Dispersions

Thick Disk

Pineda et al. poster. Also see Bochanski et al. 2007

Thick Disk

Can measure local fraction of thin disk stars and scale height

Pineda et al., in prep

Age

Difficult to measure

(MS lifetimes >> Hubble time)

Statistical

 calibrations using chromospheric activity and kinematicsWest et al. 2008

Metallicity

NIR and optical metallicity indicators

exist (Lepine et al. 2007, Johnson \& Apps 2009, Rojas-Ayala et al. 2010)

Has been studied for massive stars
(Bond et al. 2009)
More work needed before precise metallicities are available for all M dwarfs

West et al. 2010

Recap

Projed	Low-Mass Stars	Milky Way
Field LF/MF	log-normal with Mo $=0.18$ Msol	Thin disk scale height $=300 \mathrm{pc}$ $\mathrm{f}=0.96$
Kinematics	UWW motions, calibated age-activity relation	Kinematic scale heights Measured Solar motion $f=0.95$
Metallicity	Fundamental stellar parameter	Milky Way chemical evolution, Metallicity - velocity correlations
Age	Fundamental stellar parameter	Dynamic evolution, star formation history

