From filamentary clouds to prestellar cores to the IMFFirst results from HerschelIrfu

Philippe André, CEA/SAp Saclay

Herschel GB survey Ophiuchus 70/250/500 μm composite With: A. Menshchikov, V. Könyves, N. Schneider, D. Arzoumanian, S. Bontemps, F. Motte, P. Didelon, N. Peretto, M. Attard, P. Palmeirim, D. Ward-Thompson, J. Kirk, & the *Herschel* Gould Belt KP Consortium Ph. André - The Origin of Stellar Masses - Tenerife – 18 Oct 2010

The Herschel Gould Belt Survey

SPIRE/PACS 70-500 µm imaging of the bulk of nearby (d < 0.5 kpc) molecular clouds (~ 160 deg²), mostly located in Gould's Belt.
Complete census of prestellar cores and Class 0 protostars.

Motivation: Key issues on the early stages of star formation

- Nature of the relationship between the CMF and the IMF ?
- What generates prestellar cores and what governs their evolution to protostars and proto-brown dwarfs ?

Outline:

- First images from the *Herschel* Gould Belt survey
- Preliminary results on cores (e.g. CMF vs. IMF)
- The role of filaments in the core formation process
- Implications/Speculations

Herschel GB survey L1688 70/250/500 μm composite

http://gouldbelt-herschel.cea.fr/

"First images" from the Gould Belt Survey

1) Aquila Rift star-forming cloud (d ~ 260 pc)

cf. http://oshi.esa.int

Red : SPIRE 500 μm Green : SPIRE 160 μm Blue : PACS 70 μm

~ 3.3 deg x 3.3 deg field

André et al. 2010 Könyves et al. 2010 Bontemps et al. 2010 A&A *Herschel* special issue

"First images" from the Gould Belt Survey

PACS/SPIRE // mode SPIRE 250 µm image

2) Polaris flare translucent cloud (d ~ 150 pc)

 ~ 5500 M $_{\odot}~$ (CO+HI) Heithausen & Thaddeus '90

```
\sim 13 \text{ deg}^2 field
```

Miville-Deschênes et al. 2010 Ward-Thompson et al. 2010 Men'shchikov et al. 2010 A&A special issue

Revealing the structure of one of the nearest infrared dark clouds (Aquila Main: d ~ 260 pc)

Herschel (SPIRE+PACS) Dust temperature map (K) Herschel (SPIRE+PACS) Column density map (H₂/cm²)

Ph. André - The Origin of Stellar Masses - Tenerife - 18 Oct 2010

Ph. André - The Origin of Stellar Masses - Tenerife - 18 Oct 2010

Aquila: `Compact' Source Extraction (using "getsources" – A. Menshchikov et al. 2010)

Herschel (SPIRE+PACS) Aquila entire field: N_{H2} (cm⁻²)

Spatial distribution 541 starless **of extracted cores** 201 YSOs

70/160/500 µm composite image

Examples of starless cores in Aquila-East

Most of the Herschel starless cores in Aquila are bound

➢ Positions in mass vs. size diagram, consistent with ~ critical Bonnor-Ebert spheroids: $M_{BE} = 2.4 R_{BE} c_s^2/G$ for T ~ 7-20 K

Confirmation of an extinction "threshold" for the formation of prestellar cores

Confirming the link between the prestellar CMF & the IMF

Könyves et al. 2010 André et al. 2010 A&A special issue

341-541 prestellar cores in Aquila

Factor ~ 2-9 better statistics than earlier CMF studies:

e.g. Motte, André, Neri 1998; Johnstone et al. 2000; Stanke et al. 2006; Enoch et al. 2006; Alves et al. 2007; Nutter & Ward-Thompson 07

> Good (~ one-to-one) correspondence between core mass and system mass: $M_* = \varepsilon M_{core}$ with $\varepsilon \sim 0.2$ -0.4 in Aquila

The IMF is at least partly determined by pre-collapse cloud fragmentation (cf. models by Padoan & Nordlund 2002, Hennebelle & Chabrier 2008)

Most of the ~300 Polaris starless cores are unbound

Locations in mass vs. size diagram: 2 orders of magnitude below the density of self-gravitating Bonnor-Ebert isothermal spheres

The Polaris starless cores are not massive enough to form stars

The mass function of Polaris starless cores peaks at ~ 0.02 M_{\odot} , i.e., ~ one order of magnitude below the peak of the stellar IMF

Prestellar cores form out of a filamentary background

Evidence of the importance of filaments prior to Herschel

et al. 2010 A&A special issue

Only the densest filaments are gravitationally unstable and contain prestellar cores (^Δ)

André et al. 2010, A&A Special issue

 \succ The gravitational instability of filaments is controlled by the mass per unit length M_{line} (cf. Ostriker 1964, Inutsuka & Miyama 1997): • unstable if M_{line} > M_{line}, crit • unbound if M_{line} < M_{line, crit} $^{\bullet}$ M_{line, crit} = 2 c_s²/G ~ 15 M_{\odot}/pc for $T \sim 10K \iff A_V$ threshold **Simple estimate:** $M_{line} \propto N_{H2} \times Width (\sim 0.1 \text{ pc})$ **Unstable filaments highlighted** in white in the N_{H2} map

Other manifestation of the threshold

Given the typical filament width $\sim 0.1 \text{ pc (FWHM)},$ $A_v \sim 7 \text{ roughly}$ corresponds to $M_{\text{line, crit}} =$ Threshold above which the filaments are gravitationally unstable

Similar column density PDFs are found in near-IR extinction studies of nearby star-forming clouds (Kainulainen et al. 2009)

Polaris (d ~ 150 pc): Structure of the cold ISM prior to any star formation

Filaments are already widespread prior to star formation > The maximum value of M_{line}/M_{line, crit} observed in the **Polaris filaments is ~ 0.5** > The Polaris filaments are gravitationally unbound and unable to form prestellar cores and protostars at present

Origin of filaments and cores: Three possible paradigms

Magnetically-regulated star formation

Magnetically-critical condensed sheet, fragmented into filaments and cores (e.g. Nakamura & Li 2008; Basu, Ciolek etal. '09) Turbulent fragmentation Gravity-dominated cloud/star formation

Filaments and cores from shocks in largescale, supersonic turbulence (e.g. Padoan et al. 2001; MacLow & Klessen '04)

and coresFilaments from globals in large-
rsoniccloud collapsecsonicCores from local gravity(e.g. Burkert & Hartmannet al. 2001;'04; Heitsch et al. '08;Klessen '04)also Nagai et al. '98)Bate, Bonnell et al. 2003 ...

Preliminary radial profile analysis of the filaments

Taurus: (part of) B213 Filament

Herschel/SPIRE 250µm

¹²CO(1-0) + polarization vectors

Goldsmith, Heyer et al. 2008 > In the Nakamura & Li (2008) model, the striations trace mass accumulation along the magnetic field lines.

P. Palmeirim, J. Kirk et al., in prep. Ph. André - The Origin of Stellar Masses - Tenerife – 18 Oct 2010

Conclusions

First results from *Herschel* are very promising:

- Confirm the close link between the prestellar CMF and the IMF, although the whole survey will be required to fully characterize the nature of this link.
- Suggest that core formation occurs in two main steps:
 1) Filaments form first in the cold ISM, probably as a result of the dissipation of MHD turbulence; 2) The densest filaments then fragment into prestellar cores via gravitational instability above a critical extinction threshold at A_V ~ 7.

Spectroscopic and polarimetric observations required to clarify the roles of turbulence, B fields, gravity in forming the filaments.