(Some things learned from) Spitzer surveys of nearby molecular clouds

Lori Allen National Optical Astronomy Observatory

With

Amanda Heiderman, Mike Dunham, Xavier Koenig, Rob Gutermuth, Dawn Peterson, Tracy Huard, Tom Megeath & Neal Evans

Mapping stellar distributions

Orion "then"

Near-IR imaging survey E. Lada et al. 1991

and now

disk evolution

Espaillat et al. 2008

Standard Evolutionary Scenario

Note axis change!

Scenario for star- and planet formation

Formation planets

 $t=10^6-10^7 \text{ yr}$

Solar system

 $t>10^8 \text{ yr (?)}$

Outline of talk

- Cloud-wide spatial distributions of young stars (see also Bressert talk tomorrow)
- Star formation rates and gas surface densities (how the MW stacks up to other galaxies)
- Disk morphology and evolution (implications for planet formation)

L1641 in Orion A

Small Green Circles: IR-ex sources, Big Green/Blue Circles: Protostars

Serpens South Young embedded cluster

Discovered by Gould Belt Legacy Survey

- Protostar-dominated cluster
- Follows dark filament
- High density (480 YSOs / sq. deg.)
 - ==> Likely probing primordial cluster structure.

(Gutermuth et al. 2008)

Serpens South

1.1mm continuum map (AzTEC/ASTE)

Contours: 30 mJy / bm (x 2 per level)

Central peak ~4 Jy / bm

Millimeter emission follows absorption feature

Spitzer Surveys for nearby young stars

- Taurus Legacy project
 - Nearly complete survey of Taurus
- Cores to Disks (c2d) Legacy Project (d< 500 pc)
 - Surveys of 7 nearby "large" clouds and many small ones
 - Complementary molecular line and dust continuum maps
- Gould Belt Legacy Project (d < 500 pc)
 - Surveys of 13 nearby "large" clouds to complete census
- Regions of massive SF (400 pc 2 kpc)
 - Orion (400 pc)
 - Cep OB3 (1 kpc)
 - W3/W4/W5 (2 kpc)

Spitzer Surveys of Nearby Clouds and Clusters

20 nearby molecular clouds

35 young stellar clusters

90% of known stellar groups and clusters within 1 kpc (complete to ~ 0.1 M_O)

+ Several massive sf complexes at 2-3 kpc (complete to ~1.0 M_O)

YSO10K

Spitzer surveys were used to identify more than 10000 YSO in 20 molecular clouds within a distance of 1 kpc.

YSO surface densities were calculated using 10th nearest neighbor:

$$\Sigma(YSO) = 10/\pi r^2$$

Cloud	N(YSO)
Orion	3845
CepOB3	2031
N. Am. Neb.	1505
Monoceros	925
Serpens/Aquila	739
S140	490
Perseus	353
Ophiuchus	256
Serpens	199
Auriga	161
Taurus	131
Chamaeleon I	85
Lupus	82
Cepheus	64
Cor. Australis	39
Chamaeleon II	22

Ordered by total number of YSO (high to low)

Identifying Clusters

Census within 1 kpc:

14 cloud complexes, 20 clouds > 10,000 YSO

Fraction in clusters (N>10) = 67%(N>100) = 10%

But varies greatly from cloud to cloud: Fewer than half the nearby clouds contain clusters of N>100

For cloud complexes within 1 kpc, the fraction of young stars in clusters as a function of cluster size.

Star Formation Relations

Schmidt 1959:

- SFR $\sim \Sigma^{N}_{gas}$

Kennicutt 1998:

 $-\Sigma_{\rm SFR}({\rm M}_{\odot}~{\rm yr}^{-1}~{\rm kpc}^{-2}) = 2.5{\rm x}10^{-4}~\Sigma^{1.4}_{\rm gas}({\rm M}_{\odot}~{\rm pc}^{-2})$

Bigiel 2008:

 $-\Sigma_{\rm SFR}({\rm M}_{\odot}~{\rm yr}^{-1}~{\rm kpc}^{-2}) = 7.9{\rm x}10^{-3}~\Sigma^{1.0}{}_{\rm mol}(10~{\rm M}_{\odot}~{\rm pc}^{-2})$

Krumholz 2009 Prediction:

- $-\Sigma_{SFR} = f(\Sigma_{gas}, f(H_2), Z, clumping)$
- − linear $\Sigma_{\rm gas}$ < 85 M $_{\odot}$ pc $^{-2}$; steepens $\Sigma_{\rm gas}$ > 85 M $_{\odot}$ pc $^{-2}$

Star Formation Relations

Kennicutt 1998:

$$\Sigma_{\rm SFR}({\rm M}_{\odot}~{\rm yr}^{-1}~{\rm kpc}^{-2}) =$$

$$2.5 \text{x} 10^{-4} \ \Sigma^{1.4}_{gas} (M_{\odot} \ pc^{-2})$$

c2d+GB Clouds (Heiderman et al. 2010)

- 20 c2d+GB clouds and Taurus
- Clouds lie factor of 9-17 above exgal relations
- Average $\Sigma_{gas} = 92 M_{\odot}$ pc⁻²
- Kennicutt-Schmidt relation predicts $\Sigma_{\rm SFR} \sim 0.13~{\rm M_{\odot}~yr^{-1}~kpc^{-2}};$ average measured is $\Sigma_{\rm SFR} = 1.2~{\rm M_{\odot}~yr^{-1}~kpc^{-2}}$
- "inactive" clouds (Taurus, Cha III) lie near predictions

Possible Explanations

- (1) Σ_{gas} from CO (exgal) $\neq \Sigma_{gas}$ from A_V
- (2) Does Low-mass star formation behave different from high-mass star formation?
 - Exgal tracers only measure massive star formation, missing low- mass star formation
- (3) Exgal measurements are highly beamdiluted
 - Most gas lies below a star forming threshold $\Sigma_{\rm gas}$

Youngest YSOs

- factor of 21-54 above exgal relations
- Average

$$\Sigma_{\rm gas}$$
 = 225 M _{\odot} pc⁻²

• Kennicutt-Schmidt relation predicts $\Sigma_{\rm SFR} \sim 0.47~{\rm M_{\odot}~yr^{-1}~kpc^{-2}};$ average measured is $\Sigma_{\rm SFR} = 9.7~{\rm M_{\odot}~yr^{-1}~kpc^{-2}}$

(Heiderman et al. 2010)

Star Forming Threshold

- Physical motivation for a threshold first proposed by Mouschovias & Spitzer (1976)
- Σ_{crit} above which interstellar B field can't support gas from self gravitational Collapse:

$$\Sigma_{\rm crit} > 80 \ ({\rm M}_{\odot} \ {\rm pc}^{-2}) \ {\rm x \ B} \ / \ (30 \mu {\rm G})$$

- B ~20-40μG (Troland & Crutcher 2008)
- $\Sigma_{\rm crit} > 50-110 {\rm M}_{\odot} {\rm pc}^{-2}$
- Similarly, many observational studies find $\Sigma_{th} \sim \! 120 \text{-} 150 \ M_{\odot} \ pc^{-2}$

(Onishi 1998; Johnstone 2004, Enoch 2007; Andre 2010; Lada 2010)

Extinction threshold for star formation

- Most active clusters contain multiple concentrations of protostars associated with high density gas and dust.
- Can group clusters according to SFR, spatial distributions of protostars, and gas column density.

Star Formation Threshold (Σ_{th})

- broken power law fit to
 Class I & Flat
 YSO + clumps
- $\Sigma_{\text{th}} = 129 \pm 14 \text{ M}_{\odot} \text{ pc}^{-2}$ (A_V ~ 8 mag)
- Linear (slope 1.1) $\Sigma_{\rm gas} > \Sigma_{\rm th}$

Evolved Clouds

disk evolution

Espaillat et al. 2008

Spitzer photometry + spectral types

Four distinct SED types that suggest:

- a) Optically thick disks (2-24 μ m) extending inward to the dust destruction radius
- b) Optically thin disks (2-24 μm)
- c) Optically thick outer disks (24 μ m) and optically thin inner disks (2-8 μ m)
- d) Optically thick outer and empty inner disk

Range of SEDs

Agents of Disk Evolution

- Viscous spreading and draining of the disk
- Grain growth (settling in the midplane)
- Formation of planetesimals and planets
- Photoevaporation (X-rays, FUV & EUV photons)
- Initial conditions (disk masses, accretion rates)

Distribution of SED Types

Taurus: Age ~1-2 Myr; Mass Range ~ 0.2-0.6 M_{sun}

Distribution of SED Types

W5: Age ~2-5 Myr; Mass Range ~ 2-4 M_{sun}

Data from Koenig et al. 2009 40

Intermediate-mass stars lose their inner disks faster than do low-mass stars

Let's tell a story....

Thick Outer, Empty Inner Disk: d

Possibility (1); M >> M_{jup} companion forms; isolates inner disk

Such disks should show no inner disk gas and no evidence of gas accretion

Thick Outer, Empty Inner Disk: d

Possibility (2); $dM_{acc}/dt < dM(pe)/dt$; isolates inner disk

Such disks should show no inner disk gas and no evidence of gas accretion

Thick Outer; Thin Inner Disk: c

Possibility (1): A M_{jup} planet forms, creating a tidal gap

90% of the accreting gas winds up on the planet; 10% spirals into the star Inner disk gas should exhibit a gap; accretion rate ~ 10% of accretion rate of optically thick disks

Thick Outer; Thin Inner Disk: c

Possibility (2): Planetesimal formation creates optically thin inner hole; gas still present

Gas present throughout disk; accretion rate ~ accretion rate typical of optically thick disks

Summary 10k young stars w/in 1 kpc

Cloud-wide spatial distributions of young stars

Surface density varies greatly within and among clouds ~70% of young stars in 1 kpc are in groups of 10 or more

Star formation rates and gas surface densities

 Σ_{SFR} - Σ_{GAS} relation linear at high densities SF threshold ~ 8 A_{V} mag

Disk morphology and evolution

Sort Class II+transition disks into 4 categories Inner disk clearing may be result of planet formation

Observational Diagnostics

SED Type	Physical State	Stellar dM _{acc} /dt	Gas Distribution Through Disk	Disk Mass
а	Accreting PMS star	~ cTTS & HAeBe	throughout	any
b	1: planetesimals 2: planetesimals with gas	1: zero 2- cTTS & HAeBe	1: none 2: throughout	1: 10 ⁻³ M _∗ 2: any
С	1: Jovian planet 2: planetesimals with gas	1: 10% cTTS/ HAeBe 2: cTTS/HAeBe	1: inner gap 2: throughout	1: 0.01 - 0.1 M _* 2: any
d	1: photoevaporation 2: supra-Jovian planet	1: zero 2: zero	1: outer only 2: outer only	1: 10 ⁻³ M _* 2: 10 ⁻¹ M _*

20 clouds, 3124 YSO c2d + GB surveys

I:	$\alpha \ge 0.3$	14%
Flat:	$-0.3 \le \alpha < 0.3$	9%
II:	$-1.6 \le \alpha < -0.3$	47%
III:	α < -1.6	30%

IF Time is the only variable
AND
IF star formation continuous
AND
IF Class II lasts 2 Myr (half-life)
THEN

Class I lasts 0.54 Myr Flat lasts 0.35 Myr (longer than most previous estimates)

Caveats:

Class III census incomplete; not included in timescale Depends on $how \alpha$ is calculated GB not corrected for extinction Class 0 mixed with Class I

Star Forming Threshold

- Using different methods, Lada, Lombardi, & Alves (2010) found a threshold at ~116 M_☉ pc⁻² (A_V ~7.3)
- Measuring cloud mass above this threshold recovers a tight linear (slope =0.96) relation

Lack of Resolution in Exgal

- Exgal studies average **Start orming** regions unresolved
- Beam contains both diffuse & dense gas
- Assume underlying relation is what we observe: linear around Σ_{th} ~129 M_{\odot} pc $^{-2}$
- To recover the Kennicutt relation averaged over large scales, fraction of dense gas:

assume:
$$\Sigma_{\rm SFR} \propto < \Sigma_{\rm gas} >^{1.4}$$
 if: $\Sigma_{\rm SFR} \propto \Sigma_{\rm dense} \ (\Sigma_{\rm gas} > \Sigma_{\rm th})$ then: $\Sigma_{\rm dense} \propto f_{\rm dense} < \Sigma_{\rm gas} > \propto \Sigma^{1.4}_{\rm gas}$ or $f_{\rm dense} \propto \Sigma^{0.4}_{\rm gas}$

- At $<\Sigma_{\text{dense}}> \approx 300 \Sigma_{\text{th}}, f_{\text{dense}} \sim 1$
- gas dense enough to form stars→ maximal starburst

Local evidence for gas below

- No complete census of CO in the clouds within local 0.5 kpc
- Measure mass of gas using extinction maps above and below $\Sigma_{\rm th}$ $(A_V \sim 8)$
- 16 clouds d< 500 pc, A_V down to 2 mag
- The ratio of total mass below the Σ_{th} to the total mass above is 4.6
- Factor of 5.1 more in Orion (Heyer, priv. com.)
- Goldsmith et al. 2008, Taurus, A_V < 2, factor of 2 more mass
- 10 x more total molecular mass than mass above Σ_{th} is plausible
- most gas in 0.5 kpc is atomic (Evans 2008), including this gas below the threshold will yield agreement between local $\Sigma_{\rm SFR}$ and Kennicutt-Schmidt

=> exgal may lack resolution: measurements include a large amount of diffuse, non- star forming gas