The Fragmentation of expanding shells

Kazunari Iwasaki (Nagoya Univ.)

Collaborate with S. Inutsuka (Nagoya Univ.) T. Tsuribe (Osaka Univ.)

Introduction

Three Dimensional SPH Simulations

Expansion of shells

Linear Analysis

• to understand the results of 3-D simulations.

Discussion

Summary and Future Works

Radiative Feedback

- Massive stars emit ionizing (> 13.6 eV) and dissociating $(11 < h\nu < 13.6 \text{ eV})$ photons
- can work as both positive and negative feadbacks for star formation.

Positive Feedback

(Elmegreen & Lada '77)

- over-pressured hot bubble
- shock wave sweeps up molecular clouds into dense shells
 - ⇒ Gravitational Instability (GI)
 - ⇒ Star Formation

Expansion

Ambient Cold Gas

- Negative Feedback (Whitworth '79)
 - UV and FUV photons erode molecular clouds through dissociation and ionization, respectively
 - \Rightarrow suppress star formation

Observations

Deharveng et al. (2010)

- selected 102 bubbles.
- show that 86% of these bubbles enclosed HII regions.
- more than 20% of 64 bubbles (the angular resolution is sufficient) show massive star formation on their borders!

An example, N49

1-D Numerical Simulation

- Hosokawa & Inutsuka (2005, 2006)
 - One-dimensional Radiative Hydrodynamics.
 - Radiative Transfer of UV and FUV photons.
 - Solving Thermal and Chemical Processes.
- The PDR initially extends beyond the shell, but gradually trapped in the shell.
- Finally, most of the swept-up gas remains in the shell as the cold molecular gas.
 - reformation of molecular gas
 - self-shielding
- ⇒ leading to star formation?
- But, gravitational fragmentation is multi-dimensional process.

What about Multi-Dimensional Evolution ?

Linear Analysis

- isothermal gas layer confined by a hot rarefied gas on both sides.
 - Goldreich & Lynden-Bell '65, Elmegreen & Elmegreen '78,...
 - Behaviour of the GI depends on the column density.
 - In the early phase, the column density is low.

Low column density

- thickness $L \ll c_{
 m s} t_{
 m ff}$
- The sound wave travels the thickness many times during the development of the GI.
- ⇒ behaves like imcompressible fluid
- The gas tends to be round by the GI. But, density does not change.
- \Rightarrow The boundaries deform.

 However, the leading boundary of the shell is not contact discontinuity (CD) but shock front (SF).

The Effect of Shock Front

- the layer confined by shock fronts on both sides.
 - Vishniac '83, Vishniac '94, Whitworth et al.'94, KI & Tsuribe '08.
- the shock fronts deform by the GI.
- tangential flow (blue arrow) is generated behind the shock front.
- tends to make the shock fronts flat.
- ⇒ stabilizes the shell

Dispersion Relation

$$\omega^2 = c_s^2 k^2 - 2\pi G k \Sigma$$

Suprisingly, the same as that of infinitly thin layer.

Expanding Shell

- Elmegreen '94, Whitworth et al. '94
 - include expansion and accumulation effects of the ambient gas through SF.
 - neglect time evolution of the shell.
 - neglect the boundary effect of the CD.
 - thin-shell approx.

$$i\omega = -\frac{3V}{R} + \sqrt{\left(\frac{V}{R}\right)^2 - \left(c_s^2k^2 - 2\pi Gk\Sigma(t)\right)}$$

V: expansion velocity, R: radius of the shell.

Criterion of the Gravitational Instability $i\omega > 0$

$$\frac{\pi G \Sigma(t)}{c_{\rm s}} > \sqrt{8} \frac{V(t)}{R(t)}$$

- Previous linear analyses are based on many assumptions.
- Multi-dimensional simulation is crucial

Multi-dimensional simulation

- To resolve propagating dense and thin shell all the time, AMR technique or SPH have been used.
- Since enormous meshes and SPH particles are required, researches are less advanced.

In this study

- We perform the high-resolution 3D simulation to investigate the fragmentation process of expanding shells.
- We compare the results of the 3D simulation with linear analysis.
- We present more accurate criterion of the GI.

Simulation Setup

- do not calculate the radiative transfer of ionizing photon.
- but introduce cold and hot gases which evolve isothermally.
- Hot gas is pushed radially by a driving pressure $P_{driv} \propto R_{CD}^{3/2}$.

• To save SPH particles, we calculate not the whole but a part of the shell. $\theta_{\rm b} = 2\pi/26$ in this talk.

Model Parameters

- The mass of the central star : $41M_{\odot}$
 - corresponding UV photon luminosity, $Q_{\rm UV} = 10^{48.78} {
 m s}^{-1}$ (Diaz-Miller et al. '98).
- the number density of ambient gas
 - the number density, $n_{\rm E} = 10^3 {\rm ~cm^{-3}}$.
- Characteristic Scales (Simulation Units)

$$t_0 = \sqrt{\frac{3\pi}{32G\rho_{\rm E}}} = 1.6 \text{ Myr } \left(\frac{n_{\rm E}}{10^3 \text{ cm}^{-3}}\right)^{-1/2},$$
$$R_0 = 5.9 \text{ pc } \left(\frac{Q_{\rm UV}}{10^{49} \text{ s}^{-1}}\right)^{1/7} \left(\frac{n_{\rm E}}{10^3 \text{ cm}^{-3}}\right)^{-4/7},$$
$$M_0 = \rho_{\rm E} R_0^3 = 5.0 \times 10^3 M_{\odot} \left(\frac{Q_{\rm UV}}{10^{49} \text{ s}^{-1}}\right)^{3/7} \left(\frac{n_{\rm E}}{10^3 \text{ cm}^{-3}}\right)^{-5/7}.$$

Without Perturbation (Test Calculation)

- Time evolution of density and pressure profiles across the thickness.
 - The red circle: SPH simulation
 - The blue line: 1D simulation 1D spherically symmetric Lagrangian Godunov method.
- The results of the 3D simulation agrees with that of 1D simulation very well although the shell is very thin.

Perturbation

- Corrugation-type perturbation are put into the shell.
- The displacement of the shell is assumed to be $\propto -\cos{(l\phi)}$

 $(\phi = \tan^{-1}(y/x))$. *l*: angular wavenumber.

• concentrate the evolution of a single mode in each calculation.

Measures of Fluctuations

- define radial unit vector \vec{n}_i .
- $\rho_{\max}(\vec{n}_i)$: angle-dependent maximum density along \vec{n}_i .
- $R_{\rm cd}(\vec{n}_i)$: the position of the CD along \vec{n}_i .
- average of $Q = (\rho_{\max}, R_{CD})$ over $\vec{n}_i \ (1 \le i \le N)$.

$$\langle Q \rangle = \frac{1}{N} \sum_{i} Q(\vec{n}_i).$$

dispersion

$$\Delta Q = \sqrt{\frac{1}{N} \sum_{i} \left\{ Q(\vec{n}_i) - \langle Q \rangle \right\}^2}.$$

Result

- Perturbations begin to grow earlier than the prediction based on Elmegreen '94 (dashed lines).
- The behaviour of perturbations in the later phase roughly agrees the prediction of E94. 14/23

- Cross sections through z = 0 plane of the shell.
 - color map: density.
 - arrows: velocity field.
- The CD highly deforms while the SF is almot flat.

Linear analysis

- Previous linear analysis neglects the effect of the CD.
 - the same as that of the layer confined by shock fronts on both sides except for the expansion effect.
- We suggest the boundary effect of the CD destabilizes the expanding shell compared with the prediction from previous linear analysis.
- We perform a linear analysis of the expanding shell to understand the results of the SPH calculations under SF + CD boundary conditions.
 - consider the thickness
 - neglects unsteady effect
 - Unperturbed state:

the instantaneous hydrostatic density profile at each instant of time.

- Solve eigen- and boundary-values problem at each instant of time. $\Rightarrow \omega(k, t)$.
- To include unsteady effects approximately,

$$i\omega = -\frac{3V}{R} + \sqrt{\left(\frac{V}{R}\right)^2 - \omega(k,t)^2}$$

Growth Rate

• thin black solid line: the amplitude evaluated by our linear analysis.

• Our linear analysis accurately describes the results of the SPH calculations.

Eigen-function

Eigen-funcitons

SPH calculation

The cross seciton is similar to the results of the SPH calculations.

Deformation of the CD

The density profile in later phase.

- The gas tends to accumulate toward the density peak because ϕ_0 has minimum value there.
- $R_{\rm SF} R_{\rm c} > c_{\rm s} t_{\rm ff}$ (compressible mode)
 - The gas at $> R_{\rm SF}$ can collapse to the peak leaving behind the gas around boundary.
- $R_{\rm c} R_{\rm CD} < c_{\rm s} t_{\rm ff}$ (incompressible mode)
 - the pressure gradient prevent from collapsing. Instead, the GI grows through the deformation of the CD.

Time When the GI Starts

 evaluate time when the GI begins to grow by using the linear analysis.

20/23

Fitting Formulae

 derive fitting formulae which well approximate the dependence of physical variables on Q_{UV}, T_c, and n_E.

$$t_{\rm bgn} = 0.6 \text{ Myr} \left(\frac{Q_{\rm UV}}{10^{49} \text{ s}^{-1}}\right)^{-3/28} \left(\frac{T_{\rm c}}{10 \text{ K}}\right)^{3/8} \left(\frac{n_{\rm E}}{10^3 \text{ cm}^{-3}}\right)^{-25/56}$$

$$R_{\rm s,bgn} = 3.4 \text{ pc} \left(\frac{Q_{\rm UV}}{10^{49} \text{ s}^{-1}}\right)^{5/56} \left(\frac{T_{\rm c}}{10 \text{ K}}\right)^{3/16} \left(\frac{n_{\rm E}}{10^3 \text{ cm}^{-3}}\right)^{-61/112}$$

$$l_{\rm bgn} = 54 \left(\frac{Q_{\rm UV}}{10^{49} \text{ s}^{-1}}\right)^{3/14} \left(\frac{T_{\rm c}}{10 \text{ K}}\right)^{-3/4} \left(\frac{n_{\rm E}}{10^3 \text{ cm}^{-3}}\right)^{-3/28}$$

$$\lambda_{\rm bgn} = 0.4 \text{ pc} \left(\frac{Q_{\rm UV}}{10^{49} \text{ s}^{-1}}\right)^{-1/8} \left(\frac{T_{\rm c}}{10 \text{ K}}\right)^{15/16} \left(\frac{n_{\rm E}}{10^3 \text{ cm}^{-3}}\right)^{-7/16}$$

$$M_{\rm bgn} = 3.5 \text{ M}_{\odot} \left(\frac{Q_{\rm UV}}{10^{49} \text{ s}^{-1}}\right)^{-9/56} \left(\frac{T_{\rm c}}{10 \text{ K}}\right)^{33/16} \left(\frac{n_{\rm E}}{10^3 \text{ cm}^{-3}}\right)^{-47/112}$$

Fitting Formulae

- The dependence of physical quantities at $t = t_{bgn}$ on Q_{UV} , T_c , and n_E gives close agreement with Whitworth et al. '94 (W94).
- But, t_{bgn} , $R_{s,bgn}$, and $\lambda_{s,bgn}$ are roughly half those in W94.
- $M_{\rm bgn}$ is roughly 1/8 those in W94.
- Our results predict the shell splits into many fragments (~ $l_{\rm bgn}^2$) which mass is less than 10 M_{\odot} .
- But, observed core mass is several dozen ~ several hundreds M_{\odot} . There are not so many cores under star formation.

Future Works

- Effect of supersonic turbulence in ambient molecular gas.
- Effect of thermal instability of shocked gas which can produce turbulence.
 - Supersonic velocity dispersion can suppress collapse of perturbations.
 - Coalescence between cold clouds.

Summary

Summary

- We perform three-dimensional SPH simulations of expanding shells driven by HII region.
- The gravitatioal instability begins to grow earlier than the prediction from the linear analysis under the thin-shell approximation.
- During the development of the gravitational instability, the CD highly deforms while the shock front is almost flat.
- We perform new linear analysis taking into account the thickness of the shell. It describes the results of the SPH simulations well in growth rate and eigen-functions.
- We derive useful fitting formulae of the epoch when the GI begins to grow and the fragment scale.