Forecasts with LiteBIRD and a low-frequency MFI-like instrument

Raúl Fernández Cobos¹, Davide Poletti², R. Belén Barreiro¹ and Enrique Martínez González¹

¹Instituto de Física de Cantabria

²SISSA

October 18^{th} , 2018

Instituto de Física de Cantabria

CMB foregrounds for B-mode studies Forecasts with LiteBIRD and a QUIJOTE-MFI like instrument

How important are the low-frequency bands in the determination of r?

- Would a deeper knowledge about the synchrotron have an impact on a possible primordial gravitational wave detection?
- How much would a hypothetical forthcoming QUIJOTE-MFI like experiment contribute as a complement to LiteBIRD?

- Use of PySM simulations at $N_{side} = 32$ of the observations corresponding to several instrumental configurations.
- The residuals and noise level in the recovered CMB map are estimated with fgbuster (see Errard et al. JCAP03(2016)052 and D. Poletti's talk).
- Forecast on the *r* determination are computed assuming a Gaussian likelihood approach.

Forecasting procedure

• Gaussian likelihood for $\sigma(r)$:

$$\mathcal{L} \propto \exp\left(-\frac{1}{2}\chi^{2}
ight), \quad \chi^{2} = \sum_{\ell} \frac{\left[C_{\ell} - (rP_{\ell} + L_{\ell} + R_{\ell})\right]^{2}}{\frac{2}{2\ell + 1}(r^{*}P_{\ell} + L_{\ell} + R_{\ell})^{2}}$$

• Marginalized value for r:

$$\sigma(\mathbf{r}) = (F_{\rm sky} F_{11})^{-1/2}$$
$$F_{ij} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \theta_i \partial \theta_j}$$

 r^* : True value r = 0.001. P_{ℓ} : fiducial BB primordial CMB spectrum for r = 1. L_{ℓ} : fiducial BB lensing spectrum. R_{ℓ} : BB residual + noise spectrum model.

Instrument configurations

• LiteBIRD (freqs: 40 - 400 GHz)

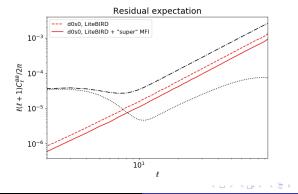
Frequency (GHz)		40.0	50.0	60	0.0	68.	4	78.0	88.5	100.0	
P Sens ($\mu K \cdot \operatorname{arcmin}$)		42.4	25.8	20).1	15.	6	12.5	10.1	11.8	
	118.9	140.0	166.0) 195	.0	23	4.9	28	0.0	337.4	402.1
	9.5	7.6	6.7	5.	1	6	.3	10	0.1	10.1	19.1

• LiteBIRD + MFI (or "super" MFI)

Frequency (GHz)	11.0	13.0	17.0	19.0
P Sens "super" MFI ($\mu K \cdot \operatorname{arcmin}$)	21.0	21.0	21.0	21.0

Forecasts with LiteBIRD and a QUIJOTE-MFI like instrument

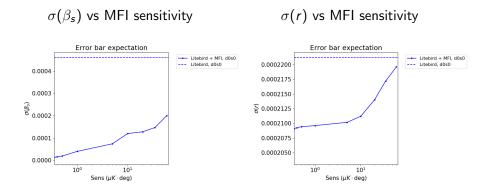
• CMB with r = 0.001.


- Dust (d0 model from PySM): modified black body with $\nu_0 = 353 \text{ GHz}$ and fixed T = 20 K and $\beta_d = 1.54$.
- Synchrotron with $\nu_0 = 23$ GHz:
 - s0: power law with fixed $\beta_s = -3.0$.
 - s1: power law with varying β_s .
 - s0curv: curved power law with fixed $\beta_s = -3.0$ and curvature running *C*.
 - s1curv: curved power law with varying β_s and fixed curvature running C.

伺 ト イ ヨ ト イ ヨ ト

Homogeneous spectral parameters

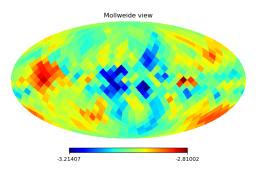
Case	d0s0			
Instrument configuration	LiteBIRD	LiteBIRD + "super" MFI		
$\sigma(\beta_s)$	0.00046	0.00001		
$\sigma(r)$	0.00022	0.00021		


CMB foregrounds for B-mode studies

Forecasts with LiteBIRD and a QUIJOTE-MFI like instrument

Impact of the MFI sensitivity

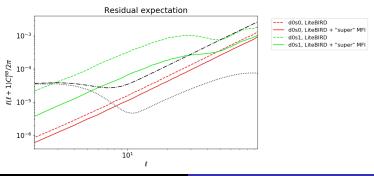
Different MFI sensitivity for a LiteBIRD + MFI configuration:


Homogeneous spectral parameters.

・ 同 ト ・ ヨ ト ・ ヨ

Varying synchrotron spectral index

• The β_s PySM template degraded to $N_{side} = 8$ is used to generate the simulations at $N_{side} = 32$.

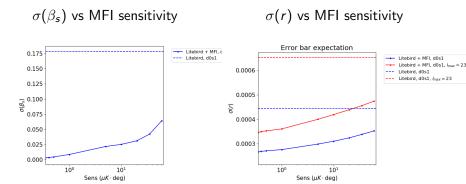


• The component separation is done with fgbuster independently in pixels of $N_{side} = 8$.

Varying synchrotron spectral index

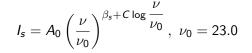
Case	d0s1			
Instrument configuration	LiteBIRD	LiteBIRD + "super" MFI		
$\sigma(\beta_s)$	0.17862	0.00333		
$\sigma(r)$	0.00045	0.00027		
$\sigma(r)$ up to $\ell=23$	0.00065	0.00035		

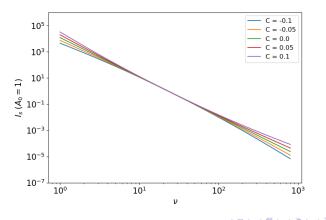
40% of improvement (47% up to $\ell = 23$)


CMB foregrounds for B-mode studies

Forecasts with LiteBIRD and a QUIJOTE-MFI like instrument

Impact of the MFI sensitivity


Different MFI sensitivity for a LiteBIRD + MFI configuration:


• Varying synchrotron spectral index.

- 4 同 2 4 日 2 4 日

Including synchrotron curvature

CMB foregrounds for B-mode studies Forecasts with LiteBIRD and a QUIJOTE-MFI like instrument

• Homogeneous spectral parameters.

Configuration	LiteBIRD	LiteBIRD + "super" MFI			
Case	C=-0.052				
$\sigma(\beta_s)$	0.00892	0.00014			
$\sigma(C)$	0.00595	0.00013			
$\sigma(r)$	0.00022	0.00021			
Case	C=0.0				
$\sigma(\beta_s)$	0.00239	0.00003			
$\sigma(C)$	0.00167	0.00003			
$\sigma(r)$	0.00022	0.00021			
Case	C=0.052				
$\sigma(\beta_s)$	0.00950	0.00014			
$\sigma(C)$	0.00698	0.00012			
$\sigma(r)$	0.00023	0.00021			

글 🕨 🖌 글

If $C_{sky} = 0.0$, fitting curvature increases the error bar of the synchrotron parameters with respect the d0s0 case but it has a neglected impact on r.

With respect to the LiteBIRD case, including a "super" MFI implies:

- Almost two orders of magnitude improvement in the determination of the synchrotron parameters.
- 5% improvement in the determination of r.

In the homogeneous spectral index case, the estimation of the synchrotron parameters is already sufficiently good such that the improvement in the determination of r by including a QUIJOTE-MFI like experiment is limited.

- 4 周 ト 4 戸 ト 4 戸 ト

• Homogeneous spectral parameters adding the 30 GHz band with $0.1\mu K \cdot \deg.$

Configuration	LiteBIRD + "super" MFI + 30 GHz
Case	C=-0.052
$\sigma(\beta_s)$	0.00006
$\sigma(C)$	0.00006
$\sigma(r)$	0.00020
Case	C=0.0
$\sigma(\beta_s)$	0.00002
$\sigma(C)$	0.00002
$\sigma(r)$	0.00021
Case	C=0.052
$\sigma(\beta_s)$	0.00006
$\sigma(C)$	0.00006
$\sigma(r)$	0.00020

Advantages of including the 30 GHz band with $0.1\mu K \cdot \deg$:

With respect to the LiteBIRD + "super" MFI case:

- 50% 60% improvement in the determination of the synchrotron parameters when $C_{sky} = \pm 0.052$.
- 20% 30% improvement in the determination of the synchrotron parameters when $C_{sky} = 0.0$.
- 2% improvement in the determination of r.

With homogeneous spectral parameters, even including a 30 GHz channel does not make a significant difference on r.

Forecast for different curvatures

• Varying synchrotron spectral index.

Configuration	LiteBIRD + "super" MFI			
Case		C=-0.052		
$\sigma(\beta_s)$	-	0.01633		
$\sigma(C)$	-	0.01480		
$\sigma(r)$	-	0.00029		
$\sigma(r)$ up to $\ell = 23$	-	0.00039		
Case	Without curvature	C=0.0		
$\sigma(\beta_s)$	0.00333	0.01626		
$\sigma(C)$	-	0.01471		
$\sigma(r)$	0.00027	0.00029		
$\sigma(r)$ up to $\ell=23$	0.00035	0.00040		
Case		C=0.052		
$\sigma(\beta_s)$	-	0.01629		
$\sigma(C)$	-	0.01462		
$\sigma(r)$	-	0.00030		
$\sigma(r)$ up to $\ell=23$	-	0.00040		

Forecasts with LiteBIRD and a QUIJOTE-MFI like instrument

In this case, fitting the curvature running when $C_{sky} = 0.0$, implies a worsening of the determination of the synchrotron spectral index of one order of magnitude and a negative impact on the rdetermination at a 10% level.

For non-null curvature, positive values of C implies slighty greater error bars than the negative ones. This is expected because the synchrotron emission is greater when the curvature is positive. Including the 30 GHz band involves a 50% - 60% improvement in the determination of the synchrotron parameters and $\sim 20\%$ in the *r* estimation with respect to the LiteBIRD + "super" MFI case.

Configuration	LiteBIRD + "super" MFI + 30 GHz			
Case	C=-0.052			
$\sigma(\beta_s)$	0.00675			
$\sigma(C)$	0.00734			
$\sigma(r)$	0.00025			
$\sigma(r)$ up to $\ell=23$	0.00033			
Case	C=0.052			
$\sigma(\beta_s)$	0.00704			
$\sigma(C)$	0.00751			
$\sigma(r)$	0.00026			
$\sigma(r)$ up to $\ell = 23$	0.00034			

Conclusions

- This is a preliminary study of the effect of including low-frequency bands in the determination of *r*.
 - More foreground models and instrumental configurations should be considered, and specially biased cases in which the sky emission is not exactly described by the model.
- Including a QUIJOTE-MFI like experiment involves an improvement about 40% 50% in the determination of r when considering a realistic case (varying index model without curvature).
- The case including curvature should be further explored.
- For more complex sky emission, it is expected that the role of the low-frequency bands is more important.

伺 ト イ ヨ ト イ ヨ ト