

Extragalactic point sources in total intensity and polarisation: lessons from Planck

Joaquín González-Nuevo González

Universidad de Oviedo

CMB foregrounds for B-mode studies Tenerife, Spain, October 15-18, 2018

Outline

Point Sources lessons learnt from Planck:

- Lesson 1: You can NOT make them disappeared!
- Lesson 2: You can NOT mask the entire sky!
- Lesson 3: Get ready to make your hands dirty!
- Lesson 4: Expect the unexpected!
- Lesson 5: Know your enemy!
- Conclusions

Sky coverage of 5 GHz surveys in equatorial coordinates: GB6 (Gregory et al. <u>1996</u>) (*blue*), PMNE (Griffith et al. <u>1995</u>) (*dark green*), PMNS (Wright et al. <u>1994</u>) (*red*), PMNT (Griffith et al. <u>1994</u>) (*light blue*), and PMNZ (Wright et al. <u>1996</u>) (*magenta*). The white regions are "holes" in these surveys that have been covered exploiting the NVSS and the SUMSS.

Lesson 1: PS removal

BEST IDEA! Using known radiosources at lower frequencies ... (e.g. PIC)

Pro	Cons
Known positions	Baricentre with more than one source?
Known flux at lower frequencies	Spectral index?
	Variability?

Lesson 1: PS removal

SECOND BEST IDEA! Detect and substract!

- In real life PS removal is never perfect!
- Residuals bias due to positional, shape and intensity uncertainties.
- To determine residuals bias accurate simulations or additional precise statistical analyses are required. (Scodeller & Hansen, 2013)

Leach et al. 2008

Lesson 2: PS masking

BEST IDEA! Mask the known sources!

- How many? Which ones? (stat info)
- How much area to mask? (intensity info)
- In all channels? (spectral information)
- Same issues in Polarization!

Lesson 2: PS masking

SECOND BEST IDEA! Mask detected sources!

- Detection pipeline needed
 - Different CompSep methods require different masks!
- Number of masks grow exponentially!
 - Single/multiple channels, CS methods, detection pipelines, ...
- Compromise: Common Mask

PLA (ESA)

Lesson 3: PS detection

Even from the cosmological point of view you can not avoid to detect the point sources.

- Planck delivered 4 incremental PS catalogues
 - ERCSC, PCCS, PCCS2(+pol), PCNT (multi-frequency)
- Better to maintain 2-3 methods
 - Be ready for internal fighting to choose these methods!
 - Optimal for internal validations
 - Should be reliable and well tested.
 - Different methods for different tasks! (single/multi freq., polarization, ...)
- Completeness vs. Reliability
- See Lopez-Caniego's talk tomorrow!

Lesson 4: Unexpected results

The Planck list of high-redshift source candidates (PHZ)

> (anticipated by Negrello et al. 2007, preliminary results Herranz et al. 2012)

- 2151 PS located in the cleanest 26% of the sky exhibiting an excess in the submillimeter compared to their environment.
- These sources are considered as high-z source candidates (z>1.5-2).

PHZ,

• Followed-up with Herschel: proto-clusters (93%) and strongly lensed galaxies (3%)

Spectral index

Planck 2015 results. XXVI Planck Intermediate results. VII 2013 Planck Early results. XIII 2011

Lesson 5: PS statistical properties

Just a few detections!

Lesson 5: PS statistical properties. Polarization

Sub-mm galaxies, the unexpected barrier!!!

Lesson 5: PS statistical properties. Polarization

Bonavera et al. 2017a,b

See Puglisi's talk!

Conclusions

- PS removal vs PS masking: choosing the least worst option
 - PS removal uncertainties introduce unknown residuals bias, to be determine.
 - New opportunities with surveys in the same bands: ALMA, Herschel, SPT, ...
 - PS masking reduce the available sky and complicate the power spectrum estimations.
- You can NOT avoid PS detection (see Lopez-Caniego's talk)
 - Very important from the astrophysical point of view, of course!
- Knowing the PS statistical properties allows us to anticipate future issues: (see Puglisi's talk)
 - Sub-mm galaxies, the unexpected barrier!!!