The S-PASS view of Synchrotron at 2.3 GHz <u>https://arxiv.org/abs/1802.01145</u> Krachmalnicoff et al., A&A, in press

CMB foregrounds for B-mode studies Tenerife - October 17th, 2018

Nicoletta Krachmalnicoff COSMOS

The S-PASS survey see E. Carretti talk

PARKES radio telescope: 64 m
Frequency: 2.3 GHz (224 MHz BW)
Sky coverage ~ 50% (South hemisphere)
Angular resolution ~ 9 arcmin

S-PASS science:

- Galactic Magnetic field
- Fermi Bubbles and Galactic structure
- ISM turbulence
- Gum Nebula
- ICM of galaxy clusters
- Extragalactic source properties
- CMB foregrounds

• • • •

S-PASS team:

Bernardi	S. Brown
Carretti (PI)	R. Crocker
Gaensler	J. Farnes
Haverkorn	J. Malereki
Kesteven	C. Purcell
Роррі	D. Schnitzeler
Staveley-Smith	X. Sun

Nicoletta Krachmalnicoff

S-PASS polarized intensity map @2.3 GHz

WMAP-K polarized intensity map @23 GHz

Overview of the analysis

S-PASS auto power spectra

Synchrotron Spectral Energy Distribution (SED)

Constraint on synchrotron curvature

Synchrotron **spectral index map**

Correlation between synchrotron and thermal dust emission

Contamination to CMB B-modes

Tenerife, October 17th 2018

ion (SED) hermal dust emission

S-PASS auto power spectra

Tenerife, October 17th 2018

S-PASS / WMAP-K / LFI-30 / WMAP-Ka

Tenerife, October 17th 2018

S-PASS / WMAP-K / LFI-30 / WMAP-Ka

Constant along the multipole range and for E and B-modes In agreement with constraints coming from WMAP and Planck

Constraints on curvature

$$D_{\ell}(\nu_1 \times \nu_2) = A_s \left(\frac{\nu_1}{\nu_0}\right)^{\beta_s + s_{run} \log(\nu_1/\nu_0)} \left(\frac{\nu_2}{\nu_0}\right)^{\beta_s + s_{run} \log(\nu_2/\nu_0)}$$

Strong degeneracy between β_s and s_{run} and C-BASS in north)

Gaussian prior on spectral index from WMAP and Planck: $\beta_s = -3.13 \pm 0.13$ s_{run} compatible with zero, with 1σ errors between 0.07 and 0.14 More data at intermediate frequencies are needed (C-BASS in south, QUIJOTE

Power spectrum of spectral index map

Tenerife, October 17th 2018

Noise realizations:

S-PASS maps @ 2.3 GHz

Power spectrum of spectral index map

level of correlation between 2.3 and 353 GHz is channels

Tenerife, October 17th 2018

CMB maps - only B-modes

Tenerife, October 17th 2018

CMB maps - only B-modes

FG contamination to CMB B-modes

Conclusions and **prospective**

S-PASS is an excellent dataset for investigating synchrotron emission in southern hemisphere at high Galactic latitudes (|b| > 30°)

High S/N power spectra: steep decay at small angular scales

Synchrotron SED for E and B-modes as a function of multiple

First constraints on synchrotron curvature in polarization

First **spectral index map in polarization** allowing extrapolation of fluctuation at small angular scales

Better characterization of **contamination to CMB B-modes**

Backup Slides

Synchrotron SED: residuals

Tenerife, October 17th 2018

Nicoletta Krachmalnicoff

Synchrotron spectral index map

$$\sum_{\nu_i} (\tilde{P}_{\nu_i} - P_{\nu_i})^2$$

$$\left[Q_{2.3} \left(\frac{2.3}{\nu_i} \right)^{\beta_s} + n_{\nu_i}^Q \right]^2 + \left[U_{2.3} \left(\frac{2.3}{\nu_i} \right)^{\beta_s} + n_{\nu_i}^U \right]^2$$