

- Survey 75% of the sky every day.
- Telescope is completely shrouded in co-moving ground screen.
- Boresight rotation enables polarization switching and systematic checks.
- Fast (10 Hz) front-end polarization modulation enables targeting the largescale (I < 10) modes of the CMB.

 Total optical efficiency has been measured to be 48%.

- Initial survey spanned July 2016 to March 2018.
- ~58,000 constant elevation sweeps of the telescope
- ~350 million VPM cycles and counting!

720° azimuthal sweep at 45° elevation

Beam map and calibrate off the moon

5

CLASS temperature survey map

CLASS temperature survey map

Transient events

Space-like stability from the ground

Space-like stability from the ground

CLASS polarization survey maps

CLASS total polarization survey map

Measure polarization of Tau A

Prior to any angle calibration, differences with WMAP are less than 1°.

Compare polarization recovery on extended sources.

WMAP Ka-band

WMAP Ka-band

Smoothed with 1.5 deg Gaussian

CLASS Q-band

WMAP Q-band

Smoothed with 1.5 deg Gaussian

Conclusions

- Temperature calibration and beam measurements have been made from mapping the moon.
- Calibration is consistent with point sources in the temperature map.
- Front-end polarization modulation has enabled us to make large-scale maps of the sky.
- The maps are consistent with the point sources and extended sources from previous measurements.

Thank you