CMB foregrounds for B-mode studies Tenerife – Spain, October 15-18, 2018

Reconstruction of the regular Galactic magnetic field from polarized emission at CMB frequencies

Vincent Pelgrims in coll. with Juan Macías-Pérez & Florian Ruppin LPSC, Grenoble, France

Why to model the polarized diffuse Galactic sky

 \rightarrow how far do we understand the data

Rationals:

Galactic science

- Constraints on the different components of the magnetized interstellar medium
 - matter content (dust, relativistic electron, ...)
 - magnetic field

CMB science

- Realistic models of Galactic foregrounds
- Provide realistic simulations to test and train component separation methods

Objective of this work:

- Constrain GMF models
- Provide up-to-date three-dimensional regular Galactic Magnetic Field

DATA: synchrotron & thermal dust

Synchrotron @ 11 GHz (QUIJOTE, Courtesy of the QUIJOTE collaboration)

Synchrotron @ 22 GHz (WMAP)

Thermal dust @ 353 GHz (Planck)

OBJECTIVE: extract the GMF from there

V. Pelgrims

October, 2018 – CMB foregrounds Conference – Tenerife

Emission modelings:

> Synchrotron: (inspired from [Rybicki & Lightman 1979])

$$I(\mathbf{n}) = \epsilon_{\nu} \int_{0}^{+\infty} dr \, n_e(r, \mathbf{n}) \, \left(\mathbf{B}_{\perp}(r, \mathbf{n})^2 \right)^{(s+1)/4}$$
$$Q(\mathbf{n}) = \epsilon_{\nu} \, p_{sync} \, \int_{0}^{+\infty} dr \, n_e(r, \mathbf{n}) \, \left(\mathbf{B}_{\perp}(r, \mathbf{n})^2 \right)^{(s+1)/4} \, \cos[2\gamma(r, \mathbf{n})]$$
$$U(\mathbf{n}) = \epsilon_{\nu} \, p_{sync} \, \int_{0}^{+\infty} dr \, n_e(r, \mathbf{n}) \, \left(\mathbf{B}_{\perp}(r, \mathbf{n})^2 \right)^{(s+1)/4} \, \sin[2\gamma(r, \mathbf{n})]$$

 α = inclination angle γ = position angle

> of the GMF vectors w.r.t. lines of sight

> Thermal dust: (inspired from [Lee & Drain 1985; Fauvet et al. 2011])

$$I(\mathbf{n}) = \epsilon_{\nu} \int_{0}^{+\infty} dr \, n_d(r, \mathbf{n}) \left\{ 1 + p^{\text{dust}} f_{\text{ma}} \left(\frac{2}{3} - \sin^2 \alpha(r, \mathbf{n}) \right) \right\}$$
$$Q(\mathbf{n}) = \epsilon_{\nu} p^{\text{dust}} f_{\text{ma}} \int_{0}^{+\infty} dr \, n_d(r, \mathbf{n}) \, \sin^2 \alpha(r, \mathbf{n}) \, \cos[2 \gamma(r, \mathbf{n})]$$
$$U(\mathbf{n}) = \epsilon_{\nu} p^{\text{dust}} f_{\text{ma}} \int_{0}^{+\infty} dr \, n_d(r, \mathbf{n}) \, \sin^2 \alpha(r, \mathbf{n}) \, \sin[2 \gamma(r, \mathbf{n})]$$

To extract GMF, dust simplifies our life:

- > polarized dust depends ONLY on the geometry of the GMF (not its strength)
- > to first order there is the possibility to separate matter and GMF in dust modeling
- \rightarrow 'significant' reduction of the number of parameters to be handled at once
- \rightarrow traceability and feasibility for MCMC analysis

RADIO FOREGROUNDS

Reconstruction of the GMF from synchrotron and thermal dust polarization?

> Our approach: going step by step with sizable parametric models

APPROACH: 3-dimensional modeling of the magnetized Galaxy

- > 3D models of matter content
- > 3D models of GMF structure (large-scale regular part)
- Integration along the lines of sight of emission mechanism(s)

gpempy software:

 PYthon modules to simulate Galactic Polarized EMission (presently thermal dust & synchrotron) Being released here: [http://www.radioforegrounds.eu/pages/software/gmf-reconstruction.php]

Can we really constrain the GMF from thermal dust polarization data?

Can we really constrain the GMF from thermal dust polarization data?

Proof of concept using our MCMC on mock datasets

I. mock_1: nd = exponential disk ; GMF = WMAP model [Page et al. 2007]

October, 2018 - CMB foregrounds Conference - Tenerife

Can we really constrain the GMF from thermal dust polarization data?

Proof of concept using our MCMC on *mock* datasets II. MCMC fits on maps

Can we really constrain the GMF from thermal dust polarization data?

Proof of concept using our MCMC on *mock* datasets III. 3D models comparison

input 3D models

recovered 3D models

Can we really constrain the GMF from thermal dust polarization data?

Proof of concept using our MCMC on mock datasets III. 3D models comparison

recovered 3D models

Y [kpc]

Y [kpc]

Can we really constrain the GMF from thermal dust polarization data?

Proof of concept using our MCMC on *mock* datasets III. 3D models comparison

recovered 3D models

Can we really constrain the GMF from thermal dust polarization data? Proof of concept using our MCMC on *mock* datasets

V. Pelgrims

Can we really constrain the GMF from thermal dust polarization data? Proof of concept using our MCMC on *mock* datasets

case A: n_d = exponential disk (ED) fitted by ED case B: n_d = 4 spiral arms (4SA) fitted by ED case C: n_d = 4SA fitted by 4SA Parametric forms of pitch and out-of-plane

Can we really constrain the GMF from thermal dust polarization data? Inclusion of turbulence into the GMF in the 'data' to be fitted

4 reconstructions tested:

	$n_{\rm d}$	gmf
input:	4SA	WMAP
case I:	4SA	WMAP
case II:	ED	WMAP
case III:	4SA	ASS
case IV:	ED	ASS

≠ pitch angles < 10° for
80% of the space in all cases
≠ tilt angles worse but still ...

October, 2018 - CMB foregrounds Conference - Tenerife

Can we really constrain the GMF from thermal dust polarization data?

Proof of concept using our MCMC on *mock* datasets [Pelgrims, Macías-Pérez & Ruppin, A&A *submitted*]

- Results:
 - > Excellent to fair reconstruction of the GMF geometrical structure
 - reconstructed GMF
 - > stable irrespective of the chosen n_d best-fit model
 - is expected to be better in the Galactic plane (pitch angle) than across the Galactic disk (tilt angle) in realistic cases
 - > Fits with reduced Stokes (q, u) allow us
 - > to circumvent mismodeling of $n_{\rm d}$
 - > to propagate properly the uncertainties
 - The regular GMF part can be 'fairly' constrained when turbulence is added to the data

> Highlight of technical points and systematics:

- > Biases in parameter space due to
 - > limited resolution of MCMC simulations
- MCMC contours do not account for these points
- Reduced χ² values become rapidly outrageous, even based on simulated data

 \rightarrow Yes, we can! (based on simulations ...)

GMF from *real* thermal dust polarization data: a 'first' step forwards

Fitted datasets: [Planck 353-GHz full-sky polarization maps]

- > Fitted models (at N_{side} = 64)
 - > Dust density distribution *n*d:
 - ED (exponential disk)
 - > ARM4 ϕ (4 spiral arms)
 - > ARM4 ϕ 1ED (4 spiral arms + exponential disk)
 - Regular and large-scale GMF: [spiral pattern + out-of-plane component]
 - ASS (axisymmetric logarithmic spiral)
 - > WMAP (Page et al. model: like ASS but *not* logarithmic)
 - > BSS (bi-symmetric logarithmic spiral: field strength modulation \rightarrow 2 arms)
 - > QSS (quadri-symmetric logarithmic spiral: field strength modulation \rightarrow 4 arms)
 - > Every $n_{\rm d}$ GMF combinations \rightarrow 12 models of the magnetized Galaxy

GMF from Planck 353-GHz full-sky polarization maps

> Fit of intensity map and *n*_d models:

October, 2018 - CMB foregrounds Conference - Tenerife

GMF from Planck 353-GHz full-sky polarization maps

> Fit of polarization maps (q, u) and GMF models: (here with n_d = ED)

GMF from *Planck* 353-GHz full-sky polarization maps

> Comparison of best-fit GMF models from (q, u) maps: (here with n_d = ED)

> Reconstructed GMF look similar (despite different parameterization and uninformative prior)

GMF from Planck 353-GHz full-sky polarization maps

- > Comparison of best-fit GMF models from (q, u) maps:
 - Reconstructed spiral patterns are (very) similar among reconstructions
 - pitch angle 24° ± 3° at Sun radius (including outliers)
 - Out-of-plane component is less constrained
 - > tilt angle of about -3° ± 5°
 - seemingly none of the reconstructions shows the expected X-shape observed in radio data of other galaxies
- > Robustness of GMF against leakage etc.
- Stability of GMF against adopted dust density models from *I*₃₅₃ or *τ*₃₅₃

Note: turbulence has not been modeled here!

GMF from *Planck* 353-GHz full-sky polarization maps

- Comparison of best-fit GMF models from (q, u) maps in terms of the degree of linear polarization and of the polarization position angle (deduced from the best-fits, not fitted)
 - line-of-sight depolarization by integration of varying GMF orientations seen in plin
 - $\,\,{\scriptstyle\succ}\,\,$ overall agreement in ψ even if twisted and skewed
 - > clear residuals between models and data either in $p_{\rm lin}$ or ψ
 - $\,\,{\scriptstyle \succ}\,\,$ residuals in $p_{\rm lin}$ and ψ are seemingly NOT spatially correlated
 - should be phenomenologically exploited to refine models, together with other maps (*I*,*Q*,*U*)
 - Highlight limitations of the models GMF, matter density and possibly assumptions in emission modeling

Conclusion

Regular (large-scale) GMF can be constrained from thermal dust polarization data

- Validation based on 'realistic' simulations
- > First MCMC fits on *Planck* 353-GHz polarization data (12 models: 3 *n*_d, 4 GMF)
- There is still room for improvements
 - Matter density models
 - > GMF models
 - Fitting approaches (treatment of the systematics)

before (?) including a description of the turbulence

Open questions

- > How far can we go with the regular part of the field alone?
- > How do the local and the global magnetic field connect?

Thank you

[Pelgrims, Macías-Pérez & Ruppin, A&A submitted – arXiv:1807.10515] [Pelgrims & Macías-Pérez, A&A submitted – arXiv:1807.10516]

GMF from dust data: [SIMULATIONS]

- GMF reconstruction
 - Reconstructed dust polarization position angle (deduced, not fitted)

Compared to the angle of the input model

Simulations

- > Comparison of best-fit GMF models from (q, u) maps:
 - > pitch and tilt angles at each location of the (3D) sampled space
 - > comparison with the input model (n_d : 4SA gmf: WMAP)

GMF from Planck 353-GHz full-sky polarization maps

- > Comparison of best-fit GMF models from (q, u) maps:
 - > pitch and tilt angles at each location of the (3D) sampled space
 - > comparison with the ones from ' n_d = ED GMF = ASS' (the least evolved)

gpempy:

- Galactic space is sampled spherically around the Sun
 - angular sampling based on HEALPix tessellation [Górski+ 2005]
 - radial sampling = constant step
- Line-of-sight integration = sum over all (3D) cells along

- Matter density distribution evaluated at each point
- GMF vectors evaluated at each point
- > the two are combined according to the relevant emission mechanism
- > the mixture is then integrated to produce the map

gpempy:

GalaxyBasics

Galactic space sampling Simple function for changes of coordinate system

GalacticProfile

Numerous models of matter density distribution; including bubbles, clouds, spiral arms, ... User-friendly e.g. allows for configuration files through dictionary facilities

BFIELD

Numerous models of regular GMF; including rings, spiral arms, ... User-friendly e.g. allows for configuration files through dictionary facilities

GalacticForegrounds

Implementation of emission mechanisms

Synchrotron and thermal dust [Lee & Drain and corrected version of Fauvet et al. 2011] Line-of-sight integration